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Abstract The last decade witnessed an explosion in the availability of data for opera-
tions research applications. Motivated by this growing availability, we propose a novel
schema for utilizing data to design uncertainty sets for robust optimization using sta-
tistical hypothesis tests. The approach is flexible and widely applicable, and robust
optimization problems built from our new sets are computationally tractable, both
theoretically and practically. Furthermore, optimal solutions to these problems enjoy
a strong, finite-sample probabilistic guarantee whenever the constraints and objective
function are concave in the uncertainty. We describe concrete procedures for choos-
ing an appropriate set for a given application and applying our approach to multiple
uncertain constraints. Computational evidence in portfolio management and queueing
confirm that our data-driven sets significantly outperform traditional robust optimiza-
tion techniques whenever data are available.
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1 Introduction

Robust optimization is a popular approach to optimization under uncertainty. The key
idea is to define an uncertainty set of possible realizations of the uncertain parameters
and then optimize against worst-case realizations within this set. Computational expe-
rience suggests that with well-chosen sets, robust models yield tractable optimization
problemswhose solutions perform aswell or better than other approaches.With poorly
chosen sets, however, robust models may be overly-conservative or computationally
intractable. Choosing a good set is crucial. Fortunately, there are several theoretically
motivated and experimentally validated proposals for constructing good uncertainty
sets [3,6,10,16]. These proposals share a common paradigm; they combine a priori
reasoning with mild assumptions on the uncertainty to motivate the construction of
the set.

On the other hand, the last decade witnessed an explosion in the availability of data.
Massive amounts of data are now routinely collected in many industries. Retailers
archive terabytes of transaction data. Suppliers track order patterns across their supply
chains. Energymarkets can access globalweather data, historical demand profiles, and,
in some cases, real-time power consumption information. These data have motivated
a shift in thinking—away from a priori reasoning and assumptions and towards a new
data-centered paradigm. A natural question, then, is how should robust optimization
techniques be tailored to this new paradigm?

In this paper, we propose a general schema for designing uncertainty sets for robust
optimization from data. We consider uncertain constraints of the form f (ũ, x) ≤ 0
where x ∈ R

k is the optimization variable, and ũ ∈ R
d is an uncertain parameter.

We model this constraint by choosing a set U and forming the corresponding robust
constraint

f (u, x) ≤ 0 ∀u ∈ U . (1)

We assume throughout that f (u, x) is concave in u for any x.
In many applications, robust formulations decompose into a series of constraints

of the form (1 through an appropriate transformation of variables, including uncertain
linear optimization and multistage adaptive optimization (see, e.g., [6]). In this sense,
(1) is the fundamental building block of many robust optimization models.

Many approaches [6,16,22] to constructing uncertainty sets for (1) assume ũ is a
random variable whose distribution P

∗ is not known except for some assumed struc-
tural features. For example, they may assume that P∗ has independent components but
unknownmarginal distributions. Furthermore, instead of insisting the given constraint
hold almost surely with respect to P

∗, they instead authorize a small probability of
violation. Specifically, given ε > 0, these approaches seek sets Uε that satisfy two key
properties:

(P1) The robust constraint (1) is computationally tractable.
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(P2) The set Uε implies a probabilistic guarantee for P
∗ at level ε, that is, for any

x∗ ∈ R
k and for every function f (u, x) that is concave in u for every x, we have

the implication:

If f
(
u, x∗

) ≤ 0 ∀u ∈ Uε, then P
∗ ( f

(
ũ, x∗

) ≤ 0
) ≥ 1− ε. (2)

(P2) ensures that a feasible solution to the robust constraint will also be feasible
with probability 1 − ε with respect to P

∗, despite not knowing P
∗ exactly. Existing

proposals achieve (P2) by leveraging the a priori structural features of P∗. Some of
these approaches, e.g., [16], only consider the special case when f (u, x) is bi-affine,
but one can generalize them to (2) using techniques from [5] (see also Sect. 2.1).

Like previous proposals, we also assume ũ is a random variable whose distribution
P
∗ is not known exactly, and seek sets Uε that satisfy these properties. Unlike previous

proposals—and this is critical—we assume thatwe have dataS = {û1, . . . , ûN } drawn
i.i.d. according to P∗. By combining these data with the a priori structural features of
P
∗, we can design new sets that imply similar probabilistic guarantees, but which are

much smaller with respect to subset containment than their traditional counterparts.
Consequently, robust models built from our new sets yield less conservative solutions
than traditional counterparts, while retaining their robustness properties.

The key to our schema is using the confidence region of a statistical hypothesis test
to quantify what we learn about P∗ from the data. Specifically, our schema depends on
three ingredients: a priori assumptions on P

∗, data, and a hypothesis test. By pairing
different a priori assumptions and tests, we obtain distinct data-driven uncertainty sets,
each with its own geometric shape, computational properties, and modeling power.
These sets can capture a variety of features of P∗, including skewness, heavy-tails and
correlations.

In principle, there are many possible pairings of a priori assumptions and tests. We
focus on pairings we believe are most relevant to practitioners for their tractability
and applicability. Our list is non-exhaustive; there may exist other pairings that yield
effective sets. Specifically, we consider situations where:

– P
∗ has known, finite discrete support (Sect. 4).

– P
∗ may have continuous support, and the components of ũ are independent

(Sect. 5).
– P

∗may have continuous support, but data are drawn from itsmarginal distributions
asynchronously (Sect. 6). This situation models the case of missing values.

– P
∗ may have continuous support, and data are drawn from its joint distribution

(Sect. 7). This is the general case.

Table 1 summarizes the a priori structural assumptions, hypothesis tests, and resulting
uncertainty sets that we propose. Each set is convex and admits a tractable, explicit
description; see the referenced equations.

For each of our sets, we provide an explicit, equivalent reformulation of (1). The
complexity of optimizing over this reformulation depends both on the function f (u, x)
and the set U . For each of our sets, we show that this reformulation is polynomial
time tractable for a large class of functions f including bi-affine functions, separa-
ble functions, conic-quadratic representable functions and certain sums of uncertain
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Table 1 Summary of data-driven uncertainty sets proposed in this paper. SOC, EC and LMI denote
second-order cone representable sets, exponential cone representable sets, and linear matrix inequalities,
respectively

Assumptions on P∗ Hypothesis test Geometric description Eqs. Inner problem

Discrete support χ2-test SOC (13, 15)

Discrete support G-test Polyhedral* (13, 16)

Independent marginals KS Test Polyhedral* (21) Line search

Independent marginals K Test Polyhedral* (76) Line search

Independent marginals CvM Test SOC* (76, 69)

Independent marginals W Test SOC* (76, 70)

Independent marginals AD Test EC (76, 71)

Independent marginals Chen et al. [23] SOC (27) Closed-form

None Marginal Samples Box (31) Closed-form

None Linear Convex
Ordering

Polyhedron (34)

None Shawe-Taylor and
Cristianini [46]

SOC (39) Closed-form

None Delage and Ye
[25]

LMI (41)

The additional “*” notation indicates a set of the above type with one additional, relative entropy constraint.
K S, K , CvM , W , and AD denote the Kolmogorov–Smirnov, Kuiper, Cramer-von Mises, Watson and
Anderson-Darling goodness of fit tests, respectively. In some cases, we can identify a worst-case realization
of u in (1) for bi-affine f and a candidate x with a specialized algorithm. In these cases, the column “Inner
Problem” roughly describes this algorithm

exponential functions. By exploiting special structure in some of our sets, we can
provide specialized routines for identifying a worst-case realization of u in (1) for
bi-affine f and a candidate solution x.1 Utilizing this separation routine within a
cutting-plane method may offer performance superior to approaches which attempt
to solve (1) directly [13,38]. In these cases, the column “Inner Problem” in Table 1
roughly describes these routines.

We are not the first to consider using hypothesis tests in data-driven optimization;
others have considered more specialized applications of hypothesis testing. Klabjan et
al. [34] proposes a distributionally robust dynamic program based on Pearson’sχ2-test
for a particular inventory problem. Goldfarb and Iyengar [29] calibrate an uncertainty
set for the mean and covariance of a distribution using linear regression and the t test.
It is not clear how to generalize these methods to other settings, e.g., distributions with
continuous support in the first case or general parameter uncertainty in the second. By
contrast, we offer a comprehensive study of the connection between hypothesis testing
and uncertainty set design, addressing a number of cases with general machinery.

Recently, Ben-Tal et al. [9] proposed a class of data-driven uncertainty sets based
on phi-divergences. Several classical hypothesis tests, like Pearson’s χ2-test and the

1 We say f (u, x) is bi-affine if the function u �→ f (u, x) is affine for any fixed x and the function
x �→ f (u, x) is affine for any fixed u.
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G-test are based on phi-divergences (see also [32]). They focus on the case where the
uncertain parameters ũ, themselves, are a probability distribution with known, finite,
discrete support. Robust optimization problems where the uncertainty is a probability
distribution are typically called distributionally robust optimization (DRO) problems,
and the corresponding uncertainty sets are called ambiguity sets. Although there have
been a huge number of ambiguity sets proposed in the literature based on generalized
moment constraints and probability metrics (see, e.g., [28,50] for recent work), to the
best of our knowledge Ben-Tal et al. [9] is the first to connect an ambiguity set with a
hypothesis test. In contrast to these DRO models for ambiguity sets, we design uncer-
tainty sets for general uncertain parameters ũ, such as future product demand, service
times, and asset returns; these uncertain parameters need not represent probabilities.
Methodologically, treating general uncertain parameters requires different techniques
than those typically used in constructing ambiguity sets.

This distinction is not to suggest ourwork entirely unrelated toDRO.Our hypothesis
testing perspective provides a unified view of ambiguity sets in DRO and many other
data-driven methods from the literature. For example, Calafiore and El Ghaoui [18]
and Delage and Ye [25] have proposed data-driven methods for chance-constrained
and distributionally robust problems, respectively, without using hypothesis testing.
We show how these works can be reinterpreted through the lens of hypothesis testing.
Leveraging this viewpoint enables us to applymethods from statistics, such as the boot-
strap, to refine these methods and improve their numerical performance. Moreover,
applying our schema, we can design data-driven uncertainty sets for robust optimiza-
tion based upon these methods. Although we focus on Calafiore and El Ghaoui [18]
and Delage and Ye [25] in this paper, this strategy applies equally well to a host of
other methods beyond DRO, such as the likelihood estimation approach of [49]. In
this sense, we believe hypothesis testing and uncertainty set design provide a common
framework in which to compare and contrast different approaches.

At the same time, Ben-Tal et al. [6] establish a one-to-one correspondence between
uncertainty sets for linear optimization that satisfy (P2) and safe approximations to
ambiguous linear chance constraints (see also Remark 1). Recall that an ambiguous,
linear chance constraint in x is of the form supP∈P P(xT ũ ≤ 0) ≥ 1−ε for some ambi-
guity setP , i.e., it is a specific instance of DRO. Thus, through this correspondence, all
of our results can be recast as new data-driven constructions for safe-approximations
to chance constraints. Whether one phrases our results in the language of ambiguous
chance constraints or uncertainty sets for (classical) robust optimization is largely a
matter of taste. In what follows, we prefer uncertainty sets since many existing robust
optimization applications in engineering and operations research are formulated in
terms of general uncertain parameters. Our new uncertainty sets can be directly sub-
stituted into these existing models with little additional effort.

Finally, we note that Campi and Garatti [21] propose a very different data-driven
method for robust optimization not based on hypothesis tests. In their approach, one
replaces the uncertain constraint f (ũ, x) ≤ 0 with N sampled constraints over the
data, f (û j , x) ≤ 0, for j = 1, . . . , N . For f (u, x) convex in x with arbitrary depen-
dence in u, they provide a tight bound N (ε) such that if N ≥ N (ε), then, with high
probability with respect to the sampling procedure PS , any x which is feasible in the
N sampled constraints satisfies P∗( f (ũ, x) ≤ 0) ≥ 1− ε. Various refinements of this

123



D. Bertsimas et al.

base method have been proposed yielding smaller bounds N (ε), including incorporat-
ing �1-regularization [20] and allowing x to violate a small fraction of the constraints
[19]. Compared to our approach, these methods are more generally applicable and
provide a similar probabilistic guarantee. In the special case we treat where f (ũ, x) is
concave in u, however, our proposed approach offers some advantages. First, because
it leverages the concave structure of f (u, x), our approach generally yields less con-
servative solutions (for the same N and ε) than [21] (see Sect. 3). Second, for fixed
ε > 0, our approach is applicable even if N < N (ε), while theirs is not. This distinc-
tion is important when ε is very small and there may not exist enough data. Finally, as
we will show, our approach reformulates (1) as a series of (relatively) sparse convex
constraints, while the Campi and Garatti’s [21] approach will in general yield N dense
constraints which may be numerically challenging when N is large.

We summarize our contributions:

1. We propose a new, systematic schema for constructing uncertainty sets from data
using statistical hypothesis tests. When the data are drawn i.i.d. from an unknown
distribution P∗, sets built from our schema imply a probabilistic guarantee for P∗
at any desired level ε.

2. We illustrate our schema by constructing a multitude of uncertainty sets. Each set
is applicable under slightly different a priori assumptions on P

∗ as described in
Table 1.

3. We prove that robust optimization problems over each of our sets are generally
tractable. Specifically, for each set, we derive an explicit robust counterpart to (1)
and show that for a large class of functions f (u, x) optimizing over this counterpart
can be accomplished in polynomial time using off-the-shelf software.

4. We unify several existing data-driven methods through the lens of hypothesis
testing. Through this lens, we motivate the use of common numerical techniques
from statistics such as bootstrapping and Gaussian approximation to improve their
performance. Moreover, we apply our schema to derive new uncertainty sets for
(1) inspired by the refined versions of these methods.

5. We illustrate how tomodel multiple uncertain constraints with our sets by optimiz-
ing the parameters chosen for each individual constraint. This approach is tractable
and yields solutions which will satisfy all uncertain constraints simultaneously for
any desired level ε.

6. We illustrate how common cross-validation techniques from model selection in
machine learning can be used to choose an appropriate set and calibrate its param-
eters.

7. Through applications in queueing and portfolio allocation, we assess the relative
strengths and weaknesses of our sets. Overall, we find that although all of our
sets shrink in size as N → ∞, they differ in their ability to represent features of
P
∗. Consequently, they may perform very differently in a given application. In the

above two settings, we find that ourmodel selection technique frequently identifies
a good set choice, and a robust optimization model built with this set performs as
well or better than other robust data-driven approaches.

The remainder of the paper is structured as follows. Section 2 reviews background to
keep the paper self-contained. Section 3 presents our schema for constructing uncer-
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tainty sets. Sections 4–7 describe the various constructions in Table 1. Section 8
reinterprets several techniques in the literature through the lens of hypothesis test-
ing and, subsequently, uses them to motivate new uncertainty sets. Section 9.1 and
“Appendix 3” discuss modeling multiple constraints and choosing the right set for an
application, respectively. The remainder of Sect. 9 presents numerical experiments,
and Sect. 10 concludes. All proofs are in the electronic companion.

In what follows, we adopt the following notational conventions: Boldfaced low-
ercase letters (x, θ , . . .) denote vectors, boldfaced capital letters (A,C, . . .) denote
matrices, and ordinary lowercase letters (x, θ ) denote scalars. Calligraphic type
(P,S . . .) denotes sets. The i th coordinate vector is ei , and the vector of all ones is e.
We always use ũ ∈ R

d to denote a random vector and ũi to denote its components. P
denotes a generic probability measure for ũ, and P

∗ denotes its true (unknown) mea-
sure. Moreover, Pi denotes the marginal measure of ũi . We let S = {û1, . . . , ûN }
be a sample of N data points drawn i.i.d. according to P

∗, and let P
∗
S denote

the measure of the sample S, i.e., the N -fold product distribution of P∗. Finally,
P̂ denotes the empirical distribution with respect to S, i.e., for any Borel set A,
P̂(ũ ∈ A) ≡ 1

N

∑N
j=1 I(û j ∈ A). Here I(·) denotes the usual indicator function.

2 Background

To keep the paper self-contained, we recall some results needed to prove our sets are
tractable and imply a probabilistic guarantee.

2.1 Tractability of Robust Nonlinear Constraints

Ben-Tal et al. [5] study constraint (1) and prove that for nonempty, convex, compact
U satisfying a mild, regularity condition,2 (1) is equivalent to

∃v ∈ R
d , t, s ∈ R s.t. δ∗ (v| U) ≤ t, f∗ (v, x) ≥ s, t − s ≤ 0. (3)

Here, f∗(v, x) denotes the partial concave-conjugate of f (u, x) and δ∗(v| U) denotes
the support function of U , defined respectively as

f∗ (v, x) ≡ inf
u∈Rd

uT v − f (u, x) , δ∗ (v| U) ≡ sup
u∈U

vTu. (4)

For many f (u, x), f∗(v, x) admits a simple, explicit description. For example, for
bi-affine f (u, x) = uTFx + fTu u+ fTx x + f0, we have

f∗ (v, x) =
{
−fTx x − f0 if v = Fx + fu
−∞ otherwise,

2 An example of a sufficient regularity condition is that ri(U) ∩ ri(dom( f (·, x))) = ∅, ∀x ∈ R
k . Here

ri(U) denotes the relative interior of U . Recall that for any non-empty convex set U , ri(U) ≡ {u ∈ U :
∀z ∈ U , ∃λ > 1 s.t. λu + (1− λ)z ∈ U} (cf. [11]).
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and (3) simplifies to

δ∗ (Fx + fu| U)+ fTx x + f0 ≤ 0. (5)

In what follows, we concentrate on proving that we can represent {(v, t) :
δ∗(v| U) ≤ t} with a small number of convex inequalities suitable for off-the-shelf
solvers for each of our sets U . From (5), this representation will imply that (1) is the-
oretically and practically tractable for each of our sets whenever f (u, x) is bi-affine.

On the other hand, Ben-Tal et al. [5] provide a number of other examples of f (u, x)
for which f∗(v, x) is tractable, including:

Separable Concave: f (u, x) =∑k
i=1 fi (u)xi , for fi (u) concave and xi ≥ 0.

Uncertain Exponentials: f (u, x) = −∑k
i=1 x

ui
i , for xi > 1 and 0 < ui ≤ 1.

Conic Quadratic Representable: f (u, x) such that the set {(t,u) ∈ R × R
d :

f (u, x) ≥ t} is conic quadratic representable ( cf. [40]).
Consequently, by providing a representation of {(v, t) : δ∗(v| U) ≤ t} for each of our
sets, we will also have proven that (1) is tractable for each of these classes of functions
via (3).

For some sets, our formulation of {(v, t) : δ∗(v| U) ≤ t} will involve complex
nonlinear constraints, such as exponential cone constraints (cf. Table 1). Although
it is theoretically possible to optimize over such constraints in polynomial time,
this approach may be numerically challenging. An alternative to solving (3) directly
is to use cutting-plane, bundle, or online optimization methods (see [8,13,38] for
details). While these methods differ in the specifics of how they address (1), the crit-
ical subroutine in each method is “solving the inner problem.” Specifically, given a
candidate solution (v0, t0), one must be able to easily compute u∗ ∈ argmaxu∈U vT0 u
(notice u∗ depends on v0). From the definitions of the support function and u∗, we
have (v0, t0) ∈ {(v, t) : δ∗(v| U) ≤ t} if and only if vT0 u

∗ ≤ t0. In particular, if
(v0, t0) /∈ {(v, t) : δ∗(v| U) ≤ t}, then the hyperplane {(v, t) : vTu∗ = t} separates
(v0, t0) from {(v, t) : δ∗(v| U) ≤ t}. Namely, any (v, t) ∈ {(v, t) : δ∗(v| U) ≤ t}
satisfies the inequality vTu∗ ≤ t , but (v0, t0) does not. Such separating hyperplanes
are used in cutting-plane and bundling methods to iteratively build up the constraint
(1).

Although it is possible to use this idea to prove polynomial time tractability of robust
constraints over our sets via the ellipsoid algorithm using separation oracles (see [30]
for details), we do not pursue this idea. Rather, our primary motivation is in improving
practical efficiency in the spirit of Bertsimas et al. [13] when the reformulation (3)
may be challenging. To this end, when possible, we provide specialized algorithms for
solving the inner problem and identifying a u∗ through closed-form formulas or line
searches. Practitioners can then employ these specialized algorithms within one of the
above referenced cutting-plane, bundle, or online learningmethods to yield practically
efficient algorithms for large-scale instances.

2.2 Hypothesis Testing

We briefly review hypothesis testing. See [35] for a more complete treatment.
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Given a null-hypothesis H0 that makes a claim about an unknown distribution P∗, a
hypothesis test seeks to use data S drawn from P

∗ to either declare that H0 is false, or,
else, that there is insufficient evidence to determine its validity. For a given significance
level 0 < α < 1, a typical test consists of a test statistic T ≡ T (S, H0), depending
on the data and H0, and a threshold Γ ≡ Γ (α,S, H0), depending on α, S, and H0. If
T > Γ , we reject H0. Since T depends on S, it is random. The threshold Γ is chosen
so that the probability with respect to PS of incorrectly rejecting H0 is at most α. The
choice of α is often application specific, although values of α = 1, 5 and 10% are
common (cf., [35, Chapt. 3.1].)

As an example, consider the two-sided Student’s t test [35, Chapt. 5].) Given μ0 ∈
R, the t test considers the null-hypothesis H0 : EP

∗ [ũ] = μ0 using the statistic T =
|(μ̂− μ0)/(σ̂

√
N )| and threshold Γ = tN−1,1−α/2. Here μ̂, σ̂ are the sample mean

and sample standard deviation, respectively, and tN−1,1−α is the 1− α quantile of the
Student t distributionwith N−1 degrees of freedom.Under the a priori assumption that
P
∗ is Gaussian, the test guarantees that we will incorrectly reject H0 with probability

at most α.
Many of the tests we consider are common in applied statistics, and tables for

their thresholds are widely available. Several of our tests, however, are novel (e.g.,
the deviations test in Sect. 5.2.) In these cases, we propose using the bootstrap to
approximate a threshold (cf. Algorithm 1). NB should be chosen to be fairly large;
we take NB = 104 in our experiments. The bootstrap is a well-studied and widely-
used technique in statistics [26,35]. Strictly speaking, hypothesis tests based on the
bootstrap are only asymptotically valid for large N (see the references for a precise
statement). Nonetheless, they are routinely used in applied statistics, even with N as
small as 100, and awealth of practical experience suggests they are extremely accurate.
Consequently, we believe practitioners can safely use bootstrapped thresholds in the
above tests.

Algorithm 1 Bootstrapping a Threshold
Input: S, T , H0, 0 < α < 1, NB ∈ Z+
Output: Approximate Threshold Γ

for j = 1 . . . NB do
S j ← Resample |S| data points from S with replacement
T j ← T (S j , H0)

end for
return �NB (1− α)�-largest value of T 1, . . . , T NB .

Finally, we introduce the confidence region of a test, which will play a critical role
in our construction. Given data S, the 1 − α confidence region of a test is the set
of null-hypotheses that would not be rejected for S at level 1 − α. For example, the

1 − α confidence region of the t test is
{
μ0 ∈ R :

∣∣∣ μ̂−μ0

σ̂
√
N

∣∣∣ ≤ tN−1,1−α/2

}
. In what

follows, however, we commit a slight abuse of nomenclature and instead use the term
confidence region to refer to the set of all measures that are consistent with any a priori
assumptions of the test and also satisfy a null-hypothesis that would not be rejected.
In the case of the t test, the confidence region in the context of this paper is

123



D. Bertsimas et al.

P t ≡
{
P ∈ Θ(−∞,∞) : P is Gaussian with mean μ0, and

∣
∣
∣
∣
μ̂− μ0

σ̂
√
N

∣
∣
∣
∣≤tN−1,1−α/2

}
,

(6)

where Θ(−∞,∞) is the set of Borel probability measures on R.
By construction, the probability (with respect to the sampling procedure PS ) that

P
∗ is a member of its confidence region is at least 1 − α as long as all a priori

assumptions are valid. This is a critical observation. Despite not knowing P
∗, we can

use a hypothesis test to create a set of distributions from the data that contains P∗ for
any specified probability.

3 Designing Data-Driven Uncertainty Sets

3.1 Geometric Characterization of the Probabilistic Guarantee

As a first step towards our schema, we provide a geometric characterization of (P2).
One might intuit that a set U implies a probabilistic guarantee at level ε only if P∗(ũ ∈
U) ≥ 1 − ε. As noted by Ben-Tal et al. [6, pp. 32–33], however, this intuition is
false. Often, sets that are much smaller than the 1 − ε support will still imply a
probabilistic guarantee at level ε, and such sets should be preferred because they are
less conservative.

The crux of the issue is that theremaybemany realizations ũ /∈ U where nonetheless
f (ũ, x∗) ≤ 0. Thus, P∗(ũ ∈ U) is in general an underestimate of P∗( f (ũ, x∗) ≤ 0).
One needs to exploit the dependence of f on u to refine the estimate. We note in
passing that many existing data-driven approaches for robust optimization, e.g., [21],
do not leverage this dependence. Consequently, although these approaches are general
purpose, they may yield overly conservative uncertainty sets for (1).

In order to tightly characterize (P2), we introduce the Value at Risk. For any v ∈ R
d

and measure P, the Value at Risk at level ε with respect to v is

VaRP

ε

(
vT ũ
)
≡ inf

{
t : P

(
vT ũ ≤ t

)
≥ 1− ε

}
. (7)

Value at Risk is positively homogenous (in v), but typically non-convex. (Recall a
function g(v) is positively homogenous if g(λv) = λg(v) for all λ > 0.) The critical
result underlying our method is a relationship between Value at Risk and support
functions of sets which satisfy (P2) (cf. (4)):

Theorem 1 a) Suppose U is non-empty, convex, and compact. Assume that for every
v ∈ R

d , δ∗(v| U) ≥ VaRP
ε

(
vT ũ
) ∀v ∈ R

d . Then, U implies a probabilistic
guarantee at level ε for P.

b) Suppose ∃v ∈ R
d such that δ∗(v| U) < VaRP

ε

(
vT ũ
)
. Then, there exists bi-affine

functions f (u, x) for which (2) does not hold.

The first part generalizes a result implicitly used in [6,23] when designing uncer-
tainty sets for the special case of bi-affine functions. To the best of our knowledge, the
extension to general concave functions f is new.
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3.2 Our Schema

The principal challenge in applying Theorem 1 to designing uncertainty sets is that
P
∗ is not known. Recall, however, that the confidence region P of a hypothesis test,

will contain P
∗ with probability at least 1− α. This motivates the following schema:

Fix 0 < α < 1 and 0 < ε < 1.

Data-Driven Uncertainty Set Schema:

1. Let P(S, α, ε) be the confidence region of a hypothesis test at level α.
2. Construct a closed, convex, finite-valued, positively homogenous (in v) upper-

bound g(v,S, ε, α) to the worst-case Value at Risk over P(S, α, ε):

sup
P∈P(S,α,ε)

VaRP

ε

(
vT ũ
)
≤ g (v,S, ε, α) ∀v ∈ R

d .

3. Identify the closed, convex set U(S, ε, α) such that g(v,S, ε, α) =
δ∗(v| U(S, ε, α)).

Note, the existence of the set in Step 3 is guaranteed by the bijection between closed,
finite-valued, positively homogenous convex functions and convex, compact sets (see
[11]).

Theorem 2 With probability at least 1 − α with respect to PS , the resulting set
U(S, ε, α) implies a probabilistic guarantee at level ε for P∗.

Remark 1 Note that δ∗(v| U(S, ε, α)) ≤ t is a safe-approximation to the ambiguous
chance constraint supP∈P(S,α,ε) P(vT ũ ≤ t) ≥ 1 − ε as defined in [6]. Ambiguous
chance-constraints are closely related to sets which satisfy (P2). See [6] for more
details. Practitioners who prefer to model with ambiguous chance constraints can
directly use δ∗(v| U(S, ε, α)) ≤ t in their formulations as a data-driven approach. We
provide explicit descriptions of δ∗(v| U(S, ε, α)) ≤ t below for each of our sets for
this purpose.

Theorem 2 ensures that with probability at least 1−α with respect to the sampling
procedure PS , a robust feasible solution x will satisfy a single uncertain constraint
f (ũ, x) ≤ 0 with probability at least 1− ε. Often, however, we face m > 1 uncertain
constraints f j (ũ, x) ≤ 0, j = 1, . . . ,m, and seek x that will simultaneously satisfy
these constraints, i.e.,

P

(
max

j=1,...,m f j (ũ, x) ≤ 0

)
≥ 1− ε, (8)

for some given ε. One approach is to replace each uncertain constraint with a corre-
sponding robust constraint

f j (u, x) ≤ 0, ∀u ∈ U (S, ε j , α
)
, (9)
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where U(S, ε j , α) is constructed via our schema at level ε j = ε/m. By the union
bound and Theorem 2, with probability at least 1−α with respect to PS , any x which
satisfies (9) will satisfy (8).

The choice ε j = ε/m is somewhat arbitrary. We would prefer to treat the ε j as
decision variables and optimize over them, i.e., replace them uncertain constraints by

min
ε1+...+εm≤ε,ε≥0

{
max

j=1,...,m

{
max

u∈U(S,ε j ,α)
f j (u, x)

}}
≤ 0

or, equivalently,

∃ε1 + . . .+ εm ≤ ε, ε ≥ 0 : f j (u, x) ≤ 0 ∀u ∈ U (S, ε j , α
)
, j = 1, . . . ,m.

(10)

Unfortunately, Theorem 2 does not imply that with probability at least 1 − α any
feasible solution to (10) will satisfy (8). The issue is that Theorem 2 requires selecting
ε independently of S, whereas the optimal ε j ’s in (10) will depend on S, creating an
in-sample bias. We next introduce a stronger requirement on an uncertainty set than
“implying a probabilistic guarantee,” and adapt Theorem 2 to address (10).

Given a family of sets indexed by ε, {U(ε) : 0 < ε < 1}, we say this family
simultaneously implies a probabilistic guarantee for P∗ if, for all 0 < ε < 1, each
U(ε) implies a probabilistic guarantee for P∗ at level ε.

Theorem 3 Suppose P(S, α, ε) ≡ P(S, α) does not depend on ε in Step 1. above.
Let {U(S, ε, α) : 0 < ε < 1} be the resulting family of sets obtained from our schema.

a) With probability at least 1 − α with respect to PS , {U(S, ε, α) : 0 < ε < 1}
simultaneously implies a probabilistic guarantee for P∗.

b) With probability at least 1− α with respect to PS , any x which satisfies (10) will
satisfy (8).

We provide numerical evidence in Sect. 9 that (10) offers significant benefit over
(9). In some special cases, we can optimize the ε j ’s in (10) exactly (see “Appendix 4).
More generally, we must approximate this outer optimization numerically. We pro-
pose a specialized method leveraging the structure of our sets for this purpose in
“Appendix 3”.

Depending on the quality of bound g(·) in Step 2 of our schema, the resulting set
U(S, ε, α) may not be contained in the support of P∗. When a priori information is
available on this support, we can always improve our set by taking intersections:

Theorem 4 Suppose supp(P∗) ⊆ U0 where U0 is closed and convex. Suppose further
that Uε is convex, compact. Then,

a) If Uε implies a probabilistic guarantee for P∗ at level ε, then Uε ∩U0 also implies
a probabilistic guarantee for P∗ at level ε.

b) If {Uε : 0 < ε < 1} simultaneously implies a probabilistic guarantee for P∗, then
{Uε ∩ U0 : 0 < ε < 1} also simultaneously impies a probabilistic guarantee for
P
∗.
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Remark 2 The convexity condition on U0 is necessary. It is not difficult to construct
examples where U0 is non-convex and U0 ∩ Uε = ∅, e.g., the example from [6, pp.
32–33] has this property.

Remark 3 For many sets U0, such as boxes, polyhedrons or ellipsoids, robust con-
straints over Uε ∩ U0 are essentially as tractable as robust constraints over Uε .
Specifically, from [5, Lemma A.4],

{
(v, t) : δ∗ (v|Uε ∩ U0)≤ t

}

=
{

(v, t) : ∃w ∈ R
d , t1, t2 ∈ R s.t. δ∗ (v − w|Uε)

≤ t1, δ∗ (w|U0) ≤ t2, t1 + t2 ≤ t
}
. (11)

Consequently, whenever the constraint δ∗(w| U0) ≤ t2 is tractable, the constraint (11)
will also be tractable.

The next four sections apply this schema to create uncertainty sets. Since, ε, α and
S are typically fixed, we suppress some or all of them in the notation.

4 Uncertainty Sets Built from Discrete Distributions

In this section, we assume P
∗ has known, finite support, i.e., supp(P∗) ⊆

{a0, . . . , an−1}. We consider two hypothesis tests: Pearson’s χ2 test and the G test
[42]). Both tests consider the hypothesis H0 : P∗ = P0 where P0 is some specified
measure. Specifically, let pi = P0(ũ = ai ) be the specified null-hypothesis, and let p̂
denote the empirical probability distribution, i.e.,

p̂i ≡ 1

N

N∑

j=1
I

(
û j = ai

)
i = 0, . . . , n − 1.

In words, p̂i represents the proportion of the sample taking value ai . Pearson’s χ2 test

rejects H0 at level α if
∑n−1

i=0
(pi− p̂i )2

2pi
> 1

2N χ2
n−1,1−α, where χ2

n−1,1−α is the 1 − α

quantile of a χ2 distribution with n−1 degrees of freedom. Similarly, theG test rejects
the null hypothesis at level α if D(p̂,p) > 1

2N χ2
n−1,1−α where

D (p,q) ≡
n−1∑

i=0
pi log (pi/qi ) (12)

is the relative entropy between p and q.
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The confidence regions for Pearson’s χ2 test and the G test are, respectively,

Pχ2 =
{

p ∈ Δn :
n−1∑

i=0

(
pi − p̂i

)2

2pi
≤ 1

2N
χ2
n−1,1−α

}

,

PG =
{
p ∈ Δn : D

(
p̂,p
) ≤ 1

2N
χ2
n−1,1−α

}
. (13)

Here Δn = {
(p0, . . . , pn−1)T : eTp = 1, pi ≥ 0 i = 0, . . . , n − 1

}
denotes the

probability simplex.Wewill use these two confidence regions in Step 1 of our schema.
For a fixed measure P, and vector v ∈ R

d , recall the Conditional Value at Risk:

CVaRP

ε

(
vT ũ
)
≡ min

t

{
t + 1

ε
E
P

[(
ũT v − t

)+]}
. (14)

Conditional Value at Risk is well-known to be a convex upper bound to Value at Risk
[1,43] for a fixed P. We can compute a bound in Step 2 by considering the worst-case
Conditional Value at Risk over the above confidence regions, yielding

Theorem 5 Suppose supp(P∗) ⊆ {a0, . . . , an−1}. With probability 1 − α over the

sample, the families {Uχ2

ε : 0 < ε < 1} and {UG
ε : 0 < ε < 1} simultaneously imply

a probabilistic guarantee for P∗, where

Uχ2

ε =
⎧
⎨

⎩
u ∈ R

d : u =
n−1∑

j=0
q ja j , q ∈ Δn, q ≤ 1

ε
p, p ∈ Pχ2

⎫
⎬

⎭
, (15)

UG
ε =

⎧
⎨

⎩
u ∈ R

d : u =
n−1∑

j=0
q ja j , q ∈ Δn, q ≤ 1

ε
p, p ∈ PG

⎫
⎬

⎭
. (16)

Their support functions are given by

δ∗
(
v| Uχ2

ε

)
= min

β,w,η,λ,t,s
β + 1

ε

(

η + λχ2
n−1,1−α

N
+ 2λ− 2

n−1∑

i=0
p̂i si

)

s.t. 0 ≤ w ≤ (λ+ η) e, λ ≥ 0, s ≥ 0,
∥
∥∥∥

2si
wi − η

∥
∥∥∥ ≤ 2λ− wi + η, aTi v − wi ≤ β, i = 0, . . . , n − 1,

(17)

δ∗
(
v| UG

ε

)
= min

β,w,η,λ
β + 1

ε

(

η + λχ2
n−1,1−α

2N
− λ

n−1∑

i=0
p̂i log

(
1−wi−η

λ

))

s.t 0 ≤ w ≤ (λ+ η) e, λ ≥ 0,

aTi v − wi ≤ β, i = 0, . . . , n − 1.

(18)

Remark 4 The sets Uχ2

ε , UG
ε strongly resemble the uncertainty set for CVaRP̂

ε in [12].

In fact, as N → ∞, all three of these sets converge almost surely to the set UCVaRP
∗

ε
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defined by δ∗(v|UCVaRP
∗

ε ) = CVaRP
∗

ε

(
vT ũ
)
. The key difference is that for finite N ,

Uχ2

ε and UG
ε imply a probabilistic guarantee for P∗ at level ε, while UCVaRP̂

ε does not.

Remark 5 Theorem 5 exemplifies the distinction drawn in the introduction between
uncertainty sets for discrete probability distributions—such asPχ2

orPG which have

been proposed in [9]—and uncertainty sets for general uncertain parameters like Uχ2

ε

and UG
ε . The relationship between these two types of sets is explicit in Eqs. (15) and

(16) because we have known, finite support. For continuous support and our other sets,
the relationship is implicit in the worst-case value-at-risk in Step 2 of our schema.

Remark 6 When representing {(v, t) : δ∗(v| Uχ2

ε ) ≤ t} or {(v, t) : δ∗(v| UG
ε ) ≤ t},

it suffices to find auxiliary variables that are feasible in (17) or (18). Thus, these
sets are second-order-cone and exponential-cone representable, respectively.Although
theoretically tractable, the exponential cone can be numerically challenging.

Because of these numerical issues, modeling with Uχ2

ε is perhaps preferable to
modeling with UG

ε . Fortunately, for large N , the difference between these two sets is
negligible:

Proposition 1 With arbitrarily high probability, for any p ∈ PG, |D(p̂,p) −
∑n−1

j=0
( p̂ j−p j )

2

2p j
| = O(nN−3).

Thus, for large N , PG is approximately equal to Pχ2
, whereby UG

ε is approximately

equal toUχ2

ε . For large N , then, Uχ2

ε should be preferred for its computational tractabil-
ity.

4.1 A Numerical Example of Uχ2

ε and UG
ε

Figure 1 illustrates the sets Uχ2

ε and UG
ε with a particular numerical example. The true

distribution is supported on the vertices of the given octagon. Each vertex is labeled
with its true probability. In the absence of data when the support of P∗ is known, the
only uncertainty set U which implies a probabilistic guarantee for P∗ is the convex

hull of these points. We construct the sets Uχ2

ε (grey line) and UG
ε (black line) for

α = ε = 10% for various N . For reference, we also plot UCVaRP
∗

ε (shaded region)
which is the limit of both sets as N →∞.

For small N , our data-driven sets are equivalent to the convex hull of supp(P∗),
however, as N increases, our sets shrink considerably. For large N , as predicted by

Propostion 1, UG
ε and Uχ2

ε are very similarly shaped.

Remark 7 Figure 1 also enables us to contrast our approach to that of Campi and
Garatti [21]. Namely, suppose that f (u, x) is linear in u. In this case, x satisfies
f (û j , x) ≤ 0 for j = 1, . . . , N , if and only if f (u, x) ≤ 0 for all u ∈ conv(A) where
A ≡ {a ∈ supp(P∗) : ∃1 ≤ j ≤ N s.t. a = û j }. As N →∞, A → supp(P∗) almost
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Fig. 1 The left panel shows the sets Uχ2
ε and UG

ε , α = ε = 10%. When N = 0, the smallest set
which implies a probabilistic guarantee is supp(P∗), the given octagon. As N increases, both sets shrink

to the UCVaRP
∗

ε given by the shaded region. The right panel shows the empirical distribution function and
confidence region corresponding to the Kolmogorov–Smirnov test

surely. In other words, as N →∞, themethod of Campi andGaratti [21] in this case is
equivalent to using the entire support as an uncertainty set, which is much larger than

UCVaRP
∗

ε above. Similar examples can be constructed with continuous distributions
or the method of Calafiore and Monastero [19]. In each case, the critical observation
is that these methods do not explicitly leverage the concave (or, in this case, linear)
structure of f (u, x).

5 Independent Marginal Distributions

We next assume P∗ may have continuous support, but the marginal distributions P∗i
are independent. Our strategy is to build a multivariate test by combining univariate
tests for each marginal distribution.

5.1 Uncertainty Sets Built from the Kolmogorov–Smirnov Test

For this section, we assume that supp(P∗) is contained in a known, finite box
[û(0), û(N+1)] ≡ {u ∈ R

d : û(0)
i ≤ ui ≤ û(N+1)

i , i = 1, . . . , d}.
Given a univariate measure P0,i , the Kolmogorov–Smirnov (KS) goodness-of fit

test applied to marginal i considers the null-hypothesis H0 : P∗i = P0,i . It rejects this
hypothesis if

max
j=1,...,N max

(
j

N
− P0,i

(
ũ ≤ û( j)

i

)
,P0,i

(
ũ < û( j)

i

)
− j − 1

N

)
> Γ K S .

where û( j)
i is the j th largest element among û1i , . . . , û

N
i . Tables for Γ K S are widely

available [47,48].
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The confidence region of the above test for the i-th marginal distribution is

PK S
i =

{
Pi ∈ Θ

[
û(0)
i , û(N+1)

i

]
: Pi

(
ũi ≤ û( j)

i

)

≥ j

N
− Γ K S, Pi

(
ũi < û( j)

i

)
≤ j − 1

N
+ Γ K S, j = 1, . . . , N

}
,

where Θ[û(0)
i , û(N+1)

i ] is the set of all Borel probability measures on [û(0)
i , û(N+1)

i ].
Unlike Pχ2

and PG , this confidence region is infinite dimensional.
Figure 1 illustrates an example. The true distribution is a standard normal whose

cumulative distribution function (cdf) is the dotted line. We draw N = 100 data points
and form the empirical cdf (solid black line). The 80% confidence region of the KS
test is the set of measures whose cdfs are more than Γ K S above or below this solid
line, i.e. the grey region.

Nowconsider themultivariate null-hypothesis H0 : P∗ = P0. SinceP∗ has indepen-
dent components, the test which rejects if Pi fails the KS test at level α′ = 1− d

√
1− α

for any i is a valid test. Namely, P∗S(P∗i is accepted by KS at level α′ for all i =
1, . . . , d) = ∏d

i=1(1 − α′) = 1 − α by independence. The confidence region of
this multivariate test is

P I =
{
P ∈ Θ

[
û(0), û(N+1)] : P =

d∏

i=1
Pi , Pi ∈ PK S

i i = 1, . . . , d
}
.

(“I” in P I emphasizes independence). We use this confidence region in Step 1 of our
schema.

When the marginals are independent, Nemirovski and Shapiro [41] proved

VaRP

ε

(
vT ũ
)
≤ inf

λ≥0

(

λ log (1/ε)+ λ

d∑

i=1
logEPi

[
evi ũi /λ

]
)

.

This bound implies the worst-case bound

sup
P∈P I

VaRP

ε

(
vT ũ
)
≤ inf

λ≥0

⎛

⎝λ log(1/ε)+ λ

d∑

i=1
log sup

Pi∈PK S
i

E
Pi
[
evi ũi /λ

]
⎞

⎠ , (19)

which we use in Step 2 of our schema. We solve the inner-most supremum explicitly
by leveraging the simple geometry of PK S

i . Intuitively, the worst-case distribution
will either be the lefthand boundary or the righthand boundary of the region in Fig. 1
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depending on the sign of vi . These boundaries are defined by the discrete distributions
qL(Γ ),qR(Γ ) ∈ ΔN+2 supported on û(0)

i , . . . , û(N+1)
i and defined by

qL
j (Γ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ if j = 0,
1
N if 1 ≤ j ≤ �N (1− Γ )�,
1− Γ − �N (1−Γ )�

N if j = �N (1− Γ )� + 1,

0 otherwise,

qR
j (Γ ) = qL

N+1− j (Γ ), j = 0, . . . , N + 1.

(20)

(Recall that D(·, ·) denotes the relative entropy, cf. (12).) Then, we have

Theorem 6 SupposeP∗ has independent components,with supp(P∗)⊆[û(0), û(N+1)].
With probability at least 1− α with respect to PS , {U I

ε : 0 < ε < 1} simultaneously
implies a probabilistic guarantee for P∗, where

U I
ε =
{
u ∈ R

d : ∃θi ∈ [0, 1], qi ∈ ΔN+2, i = 1 . . . , d,

N+1∑

j=0
û( j)
i qij = ui , i = 1, . . . , d,

d∑

i=1
D
(
qi , θiqL

(
Γ K S

)

+ (1− θi )qR
(
Γ K S

))
≤ log (1/ε)

}
.

(21)

Moreover,

δ∗
(
v| U I

ε

)
= inf

λ≥0

{

λ log (1/ε)

+λ

d∑

i=1
log

⎡

⎣max

⎛

⎝
N+1∑

j=0
qL
j (Γ K S)evi û

( j)
i /λ,

N+1∑

j=0
qR
j (Γ K S)evi û

( j)
i /λ

⎞

⎠

⎤

⎦

⎫
⎬

⎭

(22)

Remark 8 When representing {(v, t) : δ∗(v| U I ) ≤ t)}, we can drop the infimum
over λ ≥ 0 in (22). This set is exponential cone representable, which, again, may be
numerically challenging.

Remark 9 By contrast, because qL(Γ ) (resp. qR(Γ )) is decreasing (resp. increasing)
in its components, the lefthand branch of the innermost maximum in (22) will be
attained when vi ≤ 0 and the righthand branch is attained otherwise. Thus, for fixed v,
the optimization problem in λ is convex and differentiable and can be efficiently solved
with a line search. We can use this line search to identify a worst-case realization of
u for a fixed v. Specifically, let λ∗ be an optimal solution. Define
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pi =
{
qL if vi ≤ 0,

qR otherwise,
qij =

pij e
vi û

( j)
i /λ∗

∑N+1
j=0 pij e

vi û
( j)
i /λ∗

, j = 0, . . . , N + 1, i = 1, . . . , d,

u∗i =
N+1∑

j=0

qij û
( j)
i , i = 1 . . . , d.

Then u∗ ∈ argmaxu∈U I
ε
vTu. That this procedure is valid follows from the proof of

Theorem 6.

Remark 10 The KS test is one of many goodness-of-fit tests based on the empirical
distribution function (EDF), including the Kuiper (K), Cramer von-Mises (CvM),
Watson (W) and Andersen-Darling (AD) tests [48, Chapt. 5]. We can define analogues
of U I

ε for each of these tests, each having slightly different shape. Separating over
{(v, t) : δ∗(v| U) ≤ t} is polynomial time tractable for each of these sets, but we
no longer have a simple algorithm for generating violated cuts. Thus, these sets are
considerably less attractive from a computational point of view. Fortunately, through
simulation studies with a variety of different distributions, we have found that the
version of U I

ε based on the KS test generally performs as well as or better than the
other EDF tests. Consequently, we recommend using the sets U I

ε as described. For
completeness, we present the constructions for the analogous tests in “Appendix 5”.

5.2 Uncertainty Sets Motivated by Forward and Backward Deviations

In [23], the authors propose an uncertainty set based on the forward and backward
deviations of a distribution. Recall, for a univariate distribution Pi , its forward and
backward deviations are defined by

σ f i (Pi ) = sup
x>0

√

−2μi

x
+ 2

x2
log
(
EPi
[
exũi
])

,

σbi (Pi ) = sup
x>0

√
2μi

x
+ 2

x2
log
(
EPi
[
e−xũi

])
, (23)

whereEPi [ũi ] = μi . The optimizations definingσ f i (Pi ), σbi (Pi ) are one dimensional,
convex problems which can be solved by a line search.

Chen et al. [23] focus on a non-data-driven setting, where the mean and support of
P
∗ are known a priori, and show how to upper bound these deviations to calibrate their

set. In a setting where one has data and a priori knows the mean of P∗ precisely, they
propose amethod based on sample average approximation to estimate these deviations.
Unfortunately, the precise statistical behavior of these estimators is not known, so it is
not clear that this set calibrated from data implies a probabilistic guarantee with high
probability with respect to PS .

In this section, we use our schema to generalize the set of Chen et al. [23] to
a data-driven setting where neither the mean of the distribution nor its support are
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known. Our set differs in shape and size from their proposal, and, unlike their original
proposal, will simultaneously imply a probabilistic guarantee for P∗.

We begin by creating an appropriate multivariate hypothesis test. To streamline
the exposition, we assume throughout this section P

∗ has bounded (but potentially
unknown) support. This assumption ensures both σ f i (Pi ), σbi (Pi ) are finite [23].

Let α′ = 1 − d
√
1− α. For a given μ0,i , σ0, f i , σ0,bi ∈ R, consider the following

null-hypotheses

H1
0 : EP

∗
i
[
ũ
] = μ0,i , H2

0 : σ f i
(
P
∗
i

) ≤ σ0, f i , H3
0 : σbi

(
P
∗
i

) ≤ σ0,bi (24)

and the three tests that rejects if |μ̂i − μ0,i | > ti , σ f i (P̂i ) > σ f i and σbi (P̂i ) > σ bi ,
respectively. Pick the thresholds ti , σ f i and σ bi so that these tests are valid at levels
α′/2, α′/4, and α′/4, respectively. Since these three tests are not common in applied
statistics, there are no tables for their thresholds. In practice, however, wewill compute
approximate thresholds for each test using the bootstrap (Algorithm 1). By the union
bound, the test that rejects if any of these three tests rejects is valid at level α′ for the
null-hypothesis that H1

0 , H
2
0 and H3

0 are all true. The confidence region of this test is

PFB
i = {Pi ∈ Θ (−∞,∞) : mbi ≤ E

P

i

[
ũi
] ≤ m f i , σ f i (Pi ) ≤ σ f i , σbi (Pi ) ≤ σ bi },

where mbi = μ̂i − ti and m f i = μ̂i + ti .
Now consider the multivariate null-hypothesis and test

H0 : EP
∗
i
[
ũ
] = μ0,i , σ f i

(
P
∗
i

) ≤ σ0, f i , σbi
(
P
∗
i

) ≤ σ0,bi ∀i = 1, . . . , d,

Reject if |μ̂i − μ0,i | > ti or σ f i

(
P̂i

)
> σ f i or σbi

(
P̂i

)
> σbi for any i = 1, . . . , d

(25)

where ti , σ f i , σbi are valid thresholds for the previous univariate test (24) at levels
α′/2, α′/4 and α′/4, respectively. As in Sect. 5, this is a valid test at level α. Its
confidence region is PFB = {P : Pi ∈ PFB

i i = 1, . . . , d}. We use this confidence
region in Step 1 of our schema.

When the mean and deviations for P are known and the marginals are independent,
Chen et al. [23] prove

VaRP

ε

(
vT ũ
)
≤

d∑

i=1
E
P
[
ũi
]
vi +

√√√√√2 log (1/ε)

⎛

⎝
∑

i :vi<0

σ 2
bi (P)v2i +

∑

i :vi≥0
σ 2
f i (P)v2i

⎞

⎠.

(26)

Computing the worst-case value of this bound over the above confidence region in
Step 2 of our schema yields:

Theorem 7 Suppose P
∗ has independent components and bounded support. Let ti ,

σ f i and σ bi be thresholds such that (25) is a valid test at level α. With probability
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1−α with respect to the sample, the family {U FB
ε : 0 < ε < 1} simultaneously implies

a probabilistic guarantee for P∗, where

U FB
ε =

{

y1 + y2 − y3 : y2, y2 ∈ R
d+,

d∑

i=1

y22i
2σ 2

f i

+ y23i
2σ 2

bi

≤ log(1/ε), mbi ≤ y1i ≤ m f i , i = 1, . . . , d

}

. (27)

Moreover,

δ∗
(
v| U FB

ε

)
=
∑

i :vi≥0
m f ivi +

∑

i :vi<0

mbivi

+

√√√√√2 log (1/ε)

⎛

⎝
∑

i :vi≥0
σ 2

f iv
2
i +

∑

i :vi<0

σ 2
biv

2
i

⎞

⎠ (28)

Remark 11 From (28), {(v, t) : δ∗(v| U FB
ε ) ≤ t} is second order cone representable.

We can identify a worst-case realization of u in closed-form. Given v, let

λ =
√∑

i :vi>0 v2i σ
2
f i +

∑
i :vi≤0 v2i σ

2
bi

2 log(1/ε)
, u∗i =

⎧
⎨

⎩
m f i + viσ

2
f i

λ
if vi > 0

mbi + viσ
2
bi

λ
otherwise.

Then u∗ ∈ argmaxu∈U FB
ε

vTu. The correctness of this procedure follows from the
proof of Theorem 7.

Remark 12 U FB
ε need not be contained within supp(P∗). If a priori information about

supp(P∗) is known, we should apply Theorem 4 to refine U FB
ε to the smaller intersec-

tion U FB
ε ∩ conv(supp(P∗))

5.3 Comparing U I
ε and U FB

ε

Figure 2 illustrates the sets U I
ε and U FB

ε numerically. The marginal distributions of
P
∗ are independent and their densities are given in the left panel. Notice that the first

marginal is symmetric while the second is highly skewed.
In the absence of data, knowing only supp(P∗) and that P∗ has independent com-

ponents, the smallest uncertainty which implies a probabilistic guarantee is the unit
square (dotted line). With N = 100 data points from this distribution (blue circles),
however, we can construct both U I

ε (dashed black line) and U FB
ε (solid black line)

with ε = α = 10%, as shown. We also plot the limiting shape of these two sets as
N →∞ (corresponding grey lines).

Several features are evident from the plots. First, both sets are able to learn from
the data that P∗ is symmetric in its first coordinate (the sets display vertical symmetry)
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Fig. 2 The left panel shows the marginal densities. The right panel showsU I
ε (dashed black line) andU FB

ε
(solid black line) built from N = 100 data points (blue circles) and in the limit as N →∞ (corresponding
grey lines) (color figure online)

and that P∗ is skewed downwards in its second coordinate (the sets taper more sharply
towards the top). Second, althoughU I

ε is a strict subset of supp(P∗),U FB
ε is not. Finally,

neither set is a subset of the other, and, although for N = 100, U FB
ε ∩ supp(P∗) has

smaller volume than U I
ε , the reverse holds for larger N . Consequently, the best choice

of set likely depends on N .

6 Uncertainty Sets Built from Marginal Samples

In this section, we observe samples from the marginal distributions of P∗ separately,
but do not assume these marginals are independent. This happens, e.g., when samples
are drawn asynchronously, or when there are many missing values. In these cases, it is
impossible to learn the joint distribution of P∗ from the data. To streamline the expo-
sition, we assume that we observe exactly N samples of each marginal distribution.
The results generalize to the case of different numbers of samples at the expense of
more notation.

In the univariate case, David and Nagaraja [24] develop a hypothesis test for the
1− ε/d quantile, or equivalently VaRPi

ε/d(ũi ) of a distribution P. Namely, given qi,0 ∈
R, consider the hypothesis H0,i : VaRP

∗
ε/d(ũi ) ≥ qi,0. Define the index s by

s = min

⎧
⎨

⎩
k ∈ N :

N∑

j=k

(
N

j

)
(ε/d)N− j (1− ε/d) j ≤ α

2d

⎫
⎬

⎭
, (29)

and let s = N + 1 if the corresponding set is empty. Then, the test which rejects if
qi,0 > û(s)

i is valid at level α/2d [24, Sect.7.1]. David and Nagaraja [24] also prove
that s

N ↓ (1− ε/d).
The above argument applies symmetrically to the hypothesis H0,i : VaRP

∗
ε/d(−ũi ) ≥

q
i,0

where the rejection threshold now becomes û(N−s+1)
i . In the typical case when

ε/d is small, N − s + 1 < s so that û(N−s+1)
i ≤ û(s)

i .
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Next given qi,0, qi,0 ∈ R for i = 1, . . . , d, consider the multivariate hypothesis:

H0 : VaRP
∗

ε/d (ũi ) ≥ qi,0 and VaRP
∗

ε/d (−ũi ) ≥ q
i,0

for all i = 1, . . . , d.

By the union bound, the test which rejects if û(s)
i < qi or −û(N−s+1)

i < q
i
, i.e., the

above tests fail for the i-th component, is valid at level α. Its confidence region is

PM =
{
P ∈ Θ

[
û(0), û(N+1)] : VaRPi

ε/d(ũi ) ≤ û(s)
i ,

VaRPi
ε/d(−ũi ) ≥ û(N−s+1)

i , i = 1, . . . , d
}

.

Here “M” is to emphasize “marginals.” We use this confidence region in Step 1 of our
schema.

When the marginals of P are known, Embrechts et al. [27] proves

VaRP

ε

(
vT ũ
)
≤ min

λ:eT λ=ε

d∑

i=1
VaRP

λi
(vi ũi ) ≤

d∑

i=1
VaRP

ε/d (vi ũi ) (30)

where the last inequality is obtained by letting λi = ε/d for all i . From our schema,

Theorem 8 If s defined by Eq. (29) satisfies N − s + 1 < s, then, with probability at
least 1− α over the sample, the set

UM
ε =

{
u ∈ R

d : û(N−s+1)
i ≤ ui ≤ û(s)

i i = 1, . . . , d
}

. (31)

implies a probabilistic guarantee for P∗ at level ε. Moreover,

δ∗(v| UM
ε ) =

d∑

i=1
max

(
vi û

(N−s+1)
i , vi û

(s)
i

)
. (32)

Remark 13 Notice that the family {UM
ε : 0 < ε < 1}, may not simultaneously imply

a probabilistic guarantee for P∗ because the confidence region PM depends on ε.

Remark 14 The set {(v, t) : δ∗(v|UM ) ≤ t} is a simple box, representable by linear
inequalities. From (32), a worst-case realization is given by u∗i = û(s)

i I(vi > 0) +
û(N−s+1)
i I(vi < 0).

7 Uncertainty Sets for Potentially Non-independent Components

In this section, we assume we observe samples drawn from the joint distribution of
P
∗ which may have unbounded support. We consider a goodness-of-fit hypothesis test

basedon linear-convexordering proposed in [15]. Specifically, given somemultivariate
P0, consider the null-hypothesis H0 : P∗ = P0. Bertsimas et al. [15] prove that the
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test which rejects H0 if there exists (a, b) ∈ B ≡ {a ∈ R
d , b ∈ R : ‖a‖1 + |b| ≤ 1}

such that

E
P0

[(
aT ũ− b

)+]− 1

N

N∑

j=1

(
aT û j − b

)+

> ΓLCX or
1

N

N∑

j=1

(
û j
)T

û j − E
P0
[
ũT ũ
]

> Γσ

for appropriate thresholds ΓLCX , Γσ is a valid test at level α. The authors provide
an explicit bootstrap algorithm to compute ΓLCX , Γσ as well as exact formulae for
upper-bounding these quantities.

The confidence region of this test is

PLCX =
{
P ∈ Θ(Rd) : E

P

[(
aT ũ− b

)+] ≤ 1

N

N∑

j=1

(
aT û j − b

)+

+ ΓLCX ∀(a, b) ∈ B,

E
P

[
‖ũ‖2

]
≥ 1

N

N∑

j=1
‖û j‖2

⎤

⎦− Γσ

}
. (33)

We use this confidence region in Step 1 of our schema. By explicitly computing the
worst-case Value-at-Risk and applying our schema,

Theorem 9 The family {U LCX
ε : 0 < ε < 1} simultaneously implies a probabilistic

guarantee for P∗ where

U LCX
ε =

{
u ∈ R

d : ∃r ∈ R
d , 1 ≤ z ≤ 1/ε, s1, s2, s3 ∈ R

N s.t.

0 ≤ sk ≤ z

N
e, k = 1, 2, 3,

|z − eT s1| ≤ ΓLCX , |(z − 1)− eT s2| ≤ ΓLCX , |1− eT s3| ≤ ΓLCX ,

‖r + u−
n∑

j=1
s1j û j‖∞ ≤ ΓLCX , ‖r −

n∑

j=1
s2j û j‖∞ ≤ ΓLCX ,

‖u−
n∑

j=1
s3j û j‖∞ ≤ ΓLCX

}
. (34)

Moreover, δ∗(v| U LCX
ε ) = supP∈P LCX VaRP

ε

(
vT ũ
)
where

δ∗
(
v| U LCX

ε

)
= min

τ,θ,α,β,y1,y2,y3

1

ε
τ − θ+ΓLCX‖α‖1+2ΓLCX‖β‖1+ΓLCX‖v+β‖1
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s.t. − θ + τ + α1 + α2 = 1

N

n∑

j=1
y1j + y2j + y3j

α1 − βT û j ≤ y1j , α2 + βT û j ≤ y2j , α3 + βT û j + vT û j ≤ y3j ,

j = 1, . . . , N ,

τ, θ ≥ 0, y1, y2, y3 ≥ 0 (35)

Remark 15 By adding auxiliary variables, we can represent U LCX
ε as the intersection

of linear inequalities. Robust constraints over U LCX
ε are thus tractable.

Remark 16 We stress that the robust constraint maxu∈U LCX
ε

vTu is exactly equivalent

to the ambiguous chance-constraint supP∈P LCX VaRP
ε

(
vT ũ
)
above.

8 Hypothesis Testing: A Unifying Perspective

Several data-driven methods in the literature create families of measures P(S) that
contain P∗ with high probability. These methods do not explicitly reference hypothe-
sis testing. In this section, we provide a hypothesis testing interpretation of two such
methods [25,46]. Leveraging this new perspective, we show how standard techniques
for hypothesis testing, such as the bootstrap, can be used to improve upon these meth-
ods. Finally, we illustrate how our schema can be applied to these improved family of
measures to generate new uncertainty sets. To the best of our knowledge, generating
uncertainty sets for (1) is a new application of both [25,46].

The key idea in both cases is to recastP(S) as the confidence region of a hypothesis
test. This correspondence is not unique to these methods. There is a one-to-one cor-
respondence between families of measures which contain P∗ with probability at least
1 − α with respect to PS and the confidence regions of hypothesis tests. This corre-
spondence is sometimes called the “duality between confidence regions and hypothesis
testing” in the statistical literature [42]. It implies that any data-driven method predi-
cated on a family of measures that contain P∗ with probability 1−α can be interpreted
in the light of hypothesis testing.

This observation is interesting for two reasons. First, it provides a unified frame-
work to compare distinct methods in the literature and ties them to the well-established
theory of hypothesis testing in statistics. Secondly, there is a wealth of practical expe-
rience with hypothesis testing. In particular, we know empirically which tests are best
suited to various applications and which tests perform well even when the underlying
assumptions on P

∗ that motivated the test may be violated. In the next section, we
leverage some of this practical experience with hypothesis testing to strengthen these
methods, and then derive uncertainty sets corresponding to these hypothesis tests to
facilitate comparison between the approaches.
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8.1 Uncertainty Set Motivated by Cristianini and Shawe-Taylor 2003

Let ‖ · ‖F denote the Frobenius norm of matrices. In a particular machine learning
context, Shawe-Taylor and Cristianini [46] prove

Theorem 10 (Cristianini and Shawe-Taylor, 2003) Suppose that supp(P∗) is con-
tained within the ball of radius R and that N > (2 + 2 log(2/α))2. Then, with
probability at least 1 − α with respect to PS , P∗ ∈ PCS(Γ1(α/2, N ), Γ2(α/2, N )),
where

PCS (Γ1, Γ2) =
{
P ∈ Θ(R) : ‖EP

[
ũ
]− μ̂‖2 ≤ Γ1 and

‖EP

[
ũũT
]
− E

P
[
ũ
]
E
P

[
ũT
]
− Σ̂‖F ≤ Γ2,

}

where μ̂, Σ̂ denote the sample mean and covariance,

Γ1(α, N ) = R√
N

(
2+√2 log 1/α

)
, Γ2(α, N ) = 2R2

√
N

(
2+√2 log 2/α

)
,

andΘ(R) denotes the set of Borel probability measures supported on the ball of radius
R.

Wenote that the key step in their proof utilizes a general purpose concentration inequal-
ity to compute Γ1(α, N ), Γ2(α, N ). (cf. [46, Theorem 1])

On the other hand, PCS(Γ1(α/2, N ), Γ2(α/2, N )) is also the 1 − α confidence
region of a hypothesis test for the mean and covariance of P∗. Namely, consider the
null-hypothesis and test

H0 : EP
∗ [ũ] = μ0 and E

P
∗ [

ũũT
]
− E

P
∗ [
ũ
]
E
P
∗ [

ũT
]
= Σ0, (36)

Reject if ‖μ̂− μ0‖ > Γ1 or ‖Σ̂ −Σ0‖ > Γ2. (37)

Theorem 10 proves that for Γ1 → Γ1(α/2, N ) and Γ2 → Γ2(α/2, N ), this is a valid
test at level α and PCS(Γ1, Γ2) is its confidence region.

Practical experience in applied statistics suggests, however, that tests whose thresh-
olds are computed as above using general purpose concentration inequalities, while
valid, are typically very conservative for reasonable values of α, N . They reject H0
when it is false only when N is very large. The standard remedy is to use the bootstrap
(Algorithm 1) to approximate thresholds Γ B

1 , Γ B
2 . These bootstrapped thresholds are

typically much smaller than thresholds based on concentration inequalities, but are
still (approximately) valid at level 1− α. The first five columns of Table 2 illustrates
the magnitude of the difference with a particular example. Entries of∞ indicate that
the threshold as derived in [46] does not apply for this value of N . The data are drawn
from a standard normal distribution with d = 2 truncated to live in a ball of radius 9.2.
We take α = 10%, NB = 10,000. We can see that the reduction can be a full-order of
magnitude, or more.
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Table 2 Comparing Thresholds with and without bootstrap using NB = 10,000 replications, α = 10%

Shawe-Taylor and Cristianini [46] Delage and Ye [25]

N Γ1 Γ2 Γ B
1 Γ B

2 γ1 γ2 γ B
1 γ B

2

10 ∞ ∞ 0.805 1.161 ∞ ∞ 0.526 5.372

50 ∞ ∞ 0.382 0.585 ∞ ∞ 0.118 1.684

100 3.814 75.291 0.262 0.427 ∞ ∞ 0.061 1.452

500 1.706 33.671 0.105 0.157 ∞ ∞ 0.012 1.154

50,000 0.171 3.367 0.011 0.018 ∞ ∞ 1e−4 1.015

100,000 0.121 2.381 0.008 0.013 0.083 5.044 6e−5 1.010

Reducing the thresholds Γ1, Γ2 shrinksPCS(Γ1, Γ2). Thus, replacing Γ1(α/2, N ),

Γ2(α/2, N ) by Γ B
1 , Γ B

2 reduces the conservativeness of any method using PCS

(including the original machine learning application of Shawe-Taylor and Cris-
tianini [46]) while retaining its robustness to ambiguity in P∗ since Γ B

1 , Γ B
2 are

approximately valid thresholds which become exact as N → ∞. Thus in applica-
tions where having a precise 1 − α guarantee is not necessary, or N is very large,
bootstrapped thresholds should be preferred.

We use PCS(Γ1, Γ2) in Step 1 of our schema. In [18], the authors prove that for
any Γ1, Γ2,

sup
P∈PCS(Γ1,Γ2)

VaRP

ε

(
vT ũ
)
= μ̂

T v + Γ1‖v‖2 +
√
1− ε

ε

√

vT
(
Σ̂ + Γ2I

)
v. (38)

We translate this bound into an uncertainty set.

Theorem 11 Suppose Γ1, Γ2 are such that the test (37) is valid at level α. With prob-
ability at least 1−α with respect to PS , the family {UCS

ε : 0 < ε < 1} simultaneously
implies a probabilistic guarantee for P∗, where

UCS
ε =

{

μ̂+ y+ CTw : ∃y,w ∈ R
d s.t. ‖y‖ ≤ Γ1, ‖w‖ ≤

√
1

ε
− 1

}

, (39)

where CTC = Σ̂ + Γ2I is a Cholesky decomposition. Moreover, δ∗(v| UCS
ε ) is given

explicitly by the right-hand side of Eq. (38).

Remark 17 Notice that (38) is written with an equality. Thus, the robust con-
straint maxu∈UCS

ε
vT x ≤ 0 is exactly equivalent to the ambiguous chance-constraint

supP∈PCS(Γ1,Γ2)
VaRP

ε

(
vT ũ
) ≤ 0.

Remark 18 From (38), {(v, t) : δ∗(v| UCS
ε ) ≤ t} is second order cone representable.

Moreover, we can identify a worst-case realization in closed-form. Given v, let u∗ =
μ+ Γ1‖v‖v +

√
1
ε
− 1 Cv

‖Cv‖ . Then u∗ ∈ argmaxu∈UCS
ε

vTu (cf. Proof of Theorem 11).
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Remark 19 UCS
ε need not be a subset of supp(P∗). Consequently, when a priori knowl-

edge of the support is available, we can refine this set as in Theorem 4.

To emphasize the benefits of bootstrapping when constructing uncertainty sets,
Fig. 5 in the electronic companion illustrates the set UCS

ε for the example considered
in Fig. 2 with thresholds computed with and without the bootstrap.

8.2 Uncertainty Set Motivated by Delage and Ye 2010

Delage and Ye [25] propose a data-driven approach for solving distributionally robust
optimization problems. Their method relies on a slightly more general version of the
following:3

Theorem 12 (Delage and Ye [25]) Let R be such that P∗((ũ − μ)TΣ−1(ũ − μ) ≤
R2) = 1 where μ,Σ are the true mean and covariance of ũ under P∗. Let,

β2 ≡ R2

N

(
2+√2 log(2/α)

)2
, β1 ≡ R2

√
N

(√

1− d

R4 +
√
log(4/α)

)

,

and suppose N is large enough so that 1 − β1 − β2 > 0. Finally suppose
supp(P∗) ⊆ [û(0), û(N+1)]. Then with probability at least 1 − α with respect to PS ,
P
∗ ∈ PDY (

β2
1−β1−β2

,
1+β2

1−β1−β2
) where

PDY (γ1, γ2) ≡
{
P ∈ Θ

[
û(0), û(N+1)] :

(
E
P
[
ũ
]− μ̂

)T
Σ̂
−1 (

E
P
[
ũ
]− μ̂

)
≤ γ1,

E
P

[(
ũ− μ̂

) (
ũ− μ̂

)T ] � γ2Σ̂

}
.

The key idea is again to compute the thresholds using a general purpose concentration
inequality. The condition on N is required for the confidence region to bewell-defined.

We again observe that PDY (γ1, γ2) is the 1− α confidence region of a hypothesis
test. Again, consider the null-hypothesis (36) and the test

Reject if (μ̂−μ0)
T Σ̂

−1
(μ̂−μ0) > γ1 or max

λ

λT
(
Σ0+(μ0 − μ̂)

(
μ0 − μ̂

)T )
λ

λT Σ̂λ
> γ2. (40)

Then, Theorem 12 proves that replacing γ1 → β2
1−β1−β2

and γ2 → 1+β2
1−β1−β2

yields a

test valid at level α whose confidence region is PDY (γ1, γ2).
Again, these thresholds are calculated via a general purpose inequality. Instead,

we can approximate new thresholds using the bootstrap. Table 2 shows the reduc-
tion in magnitude. Observe that the bootstrap thresholds exist for all N , not just N

3 Specifically, since R is typically unknown, the authors describe an estimation procedure for R and prove
a modified version of the Theorem 12 using this estimate and different constants. We treat the simpler case
where R is known here. Extensions to the other case are straightforward.
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sufficiently large. Moreover, they are significantly smaller, so that PDY (γ B
1 , γ B

2 ) is
significantly smaller than PDY (

β2
1−β1−β2

,
1+β2

1−β1−β2
), while retaining (approximately)

the same probabilistic guarantee. Therefore, in applications where having a precise
1 − α guarantee is not necessary or N is very large, they may be preferred. We use
PDY (γ B

1 , γ B
2 ) in Step 1 of our schema.

Theorem 13 Let γ1, γ2 be such that the test (40) is valid at level α. Suppose
supp(P∗) ⊂ [û(0), û(N+1)]. Then, with probability at least 1 − α with respect to
PS , the family {UDY

ε : 0 < ε < 1} simultaneously implies a probabilistic guarantee
for P∗, where

UDY
ε =

{
u ∈
[
û(0), û(N+1)] : ∃λ ∈ R, w,m ∈ R

d , A, Â � 0 s.t.

λ ≤ 1

ε
, (λ− 1)û(0) ≤ m ≤ (λ− 1)û(N+1), λμ̂

= m+ u+ w, ‖Cw‖ ≤ λ

√
γ B
1 ,

(
λ− 1 mT

m A

)
� 0,

(
1 uT

u Â

)
� 0, λ

(
γ B
2 Σ̂ + μ̂μ̂

T
)

− A− Â− wμ̂
T − μ̂wT � 0

}
, (41)

CTC = Σ̂
−1

is aCholesky-decomposition, and γ B
1 , γ B

2 are computed by bootstrap.
Moreover,

δ∗
(
v| UDY

ε

)
= sup

P∈PDY
(
γ B
1 ,γ B

2

)
VaRP

ε

(
vT ũ
)
= inf t

s.t. r + s ≤ θε,
(
r + y+T

1 û(0) − y−T
1 û(N+1) 1

2 (q− y1)T ,
1
2 (q− y1) Z

)
� 0,

(
r + y+T

2 û(0) − y−T
2 û(N+1) + t − θ 1

2 (q− y2 − v)T ,
1
2 (q− y2 − v) Z

)
� 0,

s ≥
(
γ B
2 Σ̂ + μ̂μ̂

T
)
◦ Z+ μ̂

Tq+
√

γ B
1 ‖q+ 2Zμ̂‖

Σ̂
−1 ,

y1 = y+1 − y−1 , y2 = y+2 − y−2 , y+1 , y−1 , y+2 , y−2 , θ ≥ 0.

Remark 20 Similar to UCS
ε , the robust constraint maxu∈UDY

ε
vTu ≤ 0 is equivalent to

the ambiguous chance constraint sup
P∈PDY (γ B

1 ,γ B
2 ) VaR

P
ε

(
vT ũ
) ≤ 0.

Remark 21 The set {(v, t) : δ∗(v| UDY ) ≤ t} is representable as a linear matrix
inequality. At time ofwriting, solvers for linearmatrix inequalities are not as developed
as those for second order cone programs. Consequently, one may prefer UCS

ε to UDY
ε

in practice for its simplicity.
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Fig. 3 Comparing UM
ε , U LCX

ε , UCS
ε and UDY

ε for the example from Fig. 2, ε = 10%, α = 20%. The
black dotted line represents supp(P∗). The left panel uses N = 100 data points, while the right panel uses
N = 1000 data points

8.3 Comparing UM
ε , U LCX

ε , UCS
ε and U DY

ε

One of the benefits of deriving uncertainty sets corresponding to themethods ofDelage
and Ye [25] and Shawe-Taylor and Cristianini [46] is that it facilitates comparisons
between these methods and our own proposals. In particular, we can make visual,
qualitative assessments of the conservatism (in terms of size) and modeling power (in
terms of shape). In Fig. 3, we illustrate the sets UM

ε , U LCX
ε , UCS

ε and UDY
ε for the same

numerical example from Fig. 2. Note that each of these sets implies a probabilistic
guarantee when data are drawn i.i.d. from a general joint distribution. Because UM

does not leverage the joint distribution P
∗, it does not learn that its marginals are

independent. Consequently,UM has pointed corners permitting extreme values of both
coordinates simultaneously. The remaining sets do learn the marginal independence
from the data and, hence, have rounded corners.

Interestingly, UCS
ε ∩ supp(P∗) is very similar to UDY

ε for this example (indistin-
guishable in picture). Since UCS and UDY only depend on the first two moments of
P
∗, neither is able to capture the skewness in the second coordinate. Finally, U LCX is

contained within supp(P∗) and displays symmetry in the first coordinate and skewness
in the second. In this example it is also the smallest set (in terms of volume). All sets
shrink as N increases.

8.4 Refining U FB
ε

Another common approach to hypothesis testing in applied statistics is to use tests
designed for Gaussian data that are “robust to departures from normality.” The best
known example of this approach is the t test from Sect. 2.2, for which there is a
great deal of experimental evidence to suggest that the test is still approximately
valid when the underlying data are non-Gaussian [35, Chapt. 11.3]. Moreover, certain
nonparametric tests of the mean for non-Gaussian data are asymptotically equivalent
to the t test, so that the t test, itself, is asymptotically valid for non-Gaussian data [35,
p.180]. Consequently, the t test is routinely used in practice, even when the Gaussian
assumption may be invalid.
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We use the t test in combination with bootstrapping to refine U FB
ε . We replace

m f i ,mbi in Eq. (27), with the upper and lower thresholds of a t test at level α′/2.
We expect these new thresholds to correctly bound the true mean μi with probability
approximately 1−α′/2 with respect to the data. We then use the bootstrap to calculate
bounds on the forward and backward deviations σ f i , σ bi .

We stress not all tests designed for Gaussian data are robust to departures from
normality. Applying Gaussian tests that lack this robustness will likely yield poor per-
formance. Consequently, some care must be taken when choosing an appropriate test.

9 Implementation Details and Applications

9.1 Choosing the “Right” Set and Tuning α, ε

Choosing an appropriate set from amongst those consistentwith the a priori knowledge
of P∗ is a non-trivial task that depends on the application, data and N . In what follows,
we adapt classical model selection procedures from machine learning by viewing a
robust optimal solution x∗ as analogous to a fitted parameter in a statistical model.
There are, of course, a wide-variety of common model selection procedures (see
[2,31]), some of which may be more appropriate to the specific application than
others. Perhaps the simplest approach is to split the data into two parts, a training set
and a hold-out set. Use the training set to construct each potential uncertainty set, in
turn, and solve the robust optimization problem. Evaluate each of the corresponding
solutions out-of-sample on the hold-out set, and select the best solution. (“Best” may
be interpreted in an application specific way.) When choosing among k sets that each
imply a probabilistic guarantee at level ε with probability 1 − α, this procedure will
yield a set that satisfies a probabilistic guarantee at level ε with probability at least
1− kα by the union bound.

In situations where N is only moderately large and using only half the data to
calibrate an uncertainty set is impractical, we suggest using k-fold cross-validation to
select a set (see [31] for a review of cross-validation). Unlike the above procedure,
we cannot prove that the set chosen by k-fold cross-validation implies a probabilistic
guarantee. Nevertheless, experience in machine learning suggests cross-validation is
extremely effective. In what follows, we use fivefold cross-validation to select our sets.

As an aside, we point out that in applications where there is no natural choice for
α or ε, similar techniques can also be used to tune these parameters. Namely, solve
the model over a grid of potential values for α and/or ε and then select the best value
either using a hold-out set or cross-validation. Since the optimal value likely depends
on the choice of uncertainty set, we suggest choosing the set and these parameters
jointly.

9.2 Applications

We demonstrate how our new sets may be used in two applications: portfolio man-
agement and queueing theory. Our goals are to, first, illustrate their application and,
second, to compare them to one another. We summarize our major insights:
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– In these two applications, our data-driven sets outperform traditional, non-data
driven uncertainty sets, and, moreover, robust models built with our sets perform
as well or better than other data-driven approaches.

– Although our data-driven sets all shrink as N →∞, they learn different features
ofP∗, such as correlation structure and skewness. Consequently, different sets may
be better suited to different applications, and the right choice of set may depend
on N . Cross-validation effectively identifies the best set.

– Optimizing the ε j ’s in the case of multiple constraints can significantly improve
performance.

Because of space considerations, we treat only the portfolio management application
in the main text. The queueing application can be found in “Appendix 4”.

9.3 Portfolio Management

Portfolio management has been well-studied in the robust optimization literature [19,
29,39]. For simplicity, we will consider the one period allocation problem:

max
x

{
min
r∈U

rT x : eT x = 1, x ≥ 0
}

, (42)

which seeks the portfolio xwithmaximal worst-case return over the setU . IfU implies
a probabilistic guarantee forP∗ at level ε, then the optimal value z∗ of this optimization
is a conservative bound on the ε-worst case return for the optimal solution x∗.

We consider a syntheticmarketwith d = 10 assets. Returns are generated according
to the following model from [39]:

r̃i =
{√

(1−βi )βi
βi

with probability βi

−
√

(1−βi )βi
1−βi

with probability 1− βi
, βi = 1

2

(
1+ i

11

)
, i = 1, . . . , 10.

(43)

In this model, all assets have the same mean return (0%), the same standard deviation
(1.00%), but have different skewand support.Higher indexed assets are highly skewed;
they have a small probability of achieving a very negative return. Returns for different
assets are independent. We simulate N = 500 returns as data.

We will utilize our sets UM
ε and U LCX

ε in this application. We do not consider the
sets U I

ε or U FB
ε since we do not know a priori that the returns are independent. To

contrast to the methods of Delage and Ye [25] and Shawe-Taylor and Cristianini [46]
we also construct the sets UCS

ε and UDY
ε . Recall from Remarks 17 and 20 that robust

linear constraints over these sets are equivalent to ambiguous chance-constraints in the
original methods, but with improved thresholds. As discussed in Remark 19, we also
construct UCS

ε ∩ supp(P∗) for comparison. We use α = ε = 10% in all of our sets.
Finally, we will also compare to the method of Calafiore and Monastero [19] (denoted
“CM” in our plots), which is not an uncertainty set based method. We calibrate this
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Fig. 4 Portolio performance by method: α = ε = 10%. Top left Cross-validation results. Top rightOut-of-
sample distribution of the 10% worst-case return over 100 runs. Bottom left Average portfolio holdings by
method. Bottom right Out-of-sample distribution of the 10% worst-case return over 100 runs. The bottom
right panel uses N = 2000. The remainder use N = 500

Table 3 Portfolio statistics for each of our methods

N = 500 N = 2000

zIn CV zOut zAvg zIn CV zOut zAvg

M −1.095 −1.095 −1.095 −1.095 −1.095 −1.095 −1.095 −1.095

LCX −0.699 −0.373 −0.373 −0.411 −0.89 −0.428 −0.395 −0.411

CS −1.125 −0.403 −0.416 −0.397 −1.306 −0.400 −0.417 −0.396

CM −0.653 −0.495 −0.425 −0.539 −0.739 −0.426 −0.549 −0.451

UDY
ε and UCS

ε ∩ supp(P∗) perform identically to UM
ε . “CM” refers to the method of [19]

method to also provide a bound on the 10% worst-case return that holds with at least
90% with respect to PS so as to provide a fair comparison.

We first consider the problem of selecting an appropriate set via 5-fold cross-
validation. The top left panel in Fig. 4 shows the out-of-sample 10%worst-case return
for each of the 5 runs (blue dots), as well as the average performance on the 5 runs for
each set (black square). Sets UM

ε , UCS
ε ∩ supp(P∗) and UDY

ε yield identical portfolios
(investing everything in the first asset) so we only include UM in our graphs. The aver-
age performance is also shown in Table 3 under column CV (for “cross-validation.”)
The optimal objective value of (42) for each of our sets (trained with the entire data
set) is shown in column zIn .

Based on the top left panel of Fig. 4, it is clear that U LCX
ε and UCS

ε significantly
outperform the remaining sets. They seem to perform similarly to the CM method.
Consequently, we would choose one of these two sets in practice.
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We can assess the quality of this choice by using the ground-truth model (43) to
calculate the true 10% worst-case return for each of the portfolios. These are shown
in Table 3 under column zOut . Indeed, these sets perform better than the alternatives,
and, as expected, the cross-validation estimates are reasonably close to the true out-of-
sample performance. By contrast, the in-sample objective value zIn is a loose bound.
We caution against using this in-sample value to select the best set.

Interestingly, we point out that while UCS
ε ∩ supp(P∗) is potentially smaller (with

respect to subset containment) than UCS
ε , it performs much worse out-of-sample (it

performs identically to UM
ε ). This experiment highlights the fact that size calculations

alone cannot predict performance. Cross-validation or similar techniques are required.
One might ask if these results are specific to the particular draw of 500 data points

we use. We repeat the above procedure 100 times. The resulting distribution of 10%
worst-case return is shown in the top right panel of Fig. 4 and the average of these
runs is shown Table 3 under column zAvg . As might have been guessed from the cross-
validation results, UCS

ε delivers more stable and better performance than either U LCX
ε

or CM. U LCX
ε slightly outperforms CM, and its distribution is shifted right.

We next look at the distribution of actual holdings between thesemethods.We show
the average holding across these 100 runs as well as 10% and 90% quantiles for each
asset in the bottom left panel of Fig. 4. Since UM

ε does not use the joint distribution, it
sees no benefit to diversification. Portfolios built from UM

ε consistently hold all their
wealth in the first asset over all the runs, hence, they are omitted from graphs. The
set UCS

ε depends only on the first two moments of the data, and, consequently, cannot
distinguish between the assets. It holds a very stable portfolio of approximately the
same amount in each asset. By contrast, U LCX is able to learn the asymmetry in the
distributions, and holds slightly less of the higher indexed (toxic) assets. CM is similar
to U LCX , but demonstrates more variability in the holdings.

We point out that the performance of each method depends slightly on N . We
repeat the above experiments with N = 2000. Results are summarized in Table 3.
The bottom right panel of Fig. 4 shows the distribution of the 10% worst-case return.
(Additional plots are also available in “Additional Portfolio Results” in Appendix.)
Both U LCX and CM perform noticeably better with the extra data, but U LCX now
noticeably outperforms CM and its distribution is shifted significantly to the right.

10 Conclusions

The prevalence of high quality data is reshaping operations research. Indeed, a new
data-centered paradigm is emerging. In this work, we took a step towards adapting
traditional robust optimization techniques to this new paradigm. Specifically, we pro-
posed a novel schema for designing uncertainty sets for robust optimization from data
using hypothesis tests. Sets designed using our schema imply a probabilistic guarantee
and are typically much smaller than corresponding data poor variants. Models built
from these sets are thus less conservative than conventional robust approaches, yet
retain the same robustness guarantees.
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Appendix 1: Omitted Proofs

Proof of Theorem 1

Proof For the first part, let x∗ be such that f (u, x∗) ≤ 0 for all u ∈ Uε , and consider
the closed, convex set {u ∈ R

d : f (u, x∗) ≥ t}where t > 0. That x∗ is robust feasible
implies maxu∈U f (u, x∗) ≤ 0 which implies that U and {u ∈ R

d : f (u, x∗) ≥ t}
are disjoint. From the separating hyperplane theorem, there exists a strict separating
hyperplane vTu = v0 such that v0 > vTu for all u ∈ U and vTu > v0 for all
u ∈ {u ∈ R

d : f (u, x∗) ≥ t}. Observe

v0 > max
u∈U

vTu = δ∗(v| U) ≥ VaRP

ε

(
vT ũ
)

,

and

P
(
f
(
ũ, x∗

) ≥ t
) ≤ P

(
vT ũ > v0

)
≤ P

(
vT ũ > VaRP

ε

(
vT ũ
))

≤ ε.

Taking the limit as t ↓ 0 and using the continuity of probability proves P( f (ũ, x∗) >

0) ≤ ε and that (2) is satisfied.
For the secondpart of the theorem, let t > 0 be such that δ∗(v|U) ≤ VaRP

ε

(
vT ũ
)−t .

Define f (u, x) ≡ vTu− x . Then x∗ = δ∗(v| U) satisfies f (u, x∗) ≤ 0 for all u ∈ U ,
but

P ( f (ũ, x) > 0) = P

(
vT ũ > δ∗ (v| U)

)
≥ P

(
vT ũ ≥ VaRP

ε

(
vT ũ
)
− t
)

> ε

by (7). Thus, (2) does not hold. � 

Proofs of Theorems 2–4

Proof of Theorem 2

P
∗
S

(
U(S, ε, α) implies a probabilistic guarantee at levelε for P∗

)

= P
∗
S
(
δ∗ (v| U(S, ε, α)) ≥ VaRP

∗
ε

(
vT ũ
)
∀v ∈ R

d
)

(Theorem 1)

≥ P
∗
S
(
P
∗ ∈ P(S, ε, α)

)
(Step 2 of schema)

≥ 1− α (Confidence region).

� 
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Proof For the first part,

P
∗
S ({U(S, ε, α) : 0 < ε < 1} simultaneously implies a probabilistic guarantee)

= P
∗
S (δ∗(v| U(S, ε, α)) ≥ VaRP

∗
ε

(
vT ũ
)
∀v ∈ R

d , 0 < ε < 1) (Theorem 1)

≥ P
∗
S (P∗ ∈

⋂

ε:0<ε<1

P(S, ε, α)) (Step 2 of schema)

= P
∗
S (P∗ ∈ P(S, α)) ((P(S, α)) is independent of ε)

≥ 1− α (Confidence region).

For the second part, let ε1, . . . , εm denote any feasible ε j ’s in (10).

1− α ≤ P
∗
S ({U (S, ε, α) : 0 < ε < 1} simultaneously implies a probabilistic guarantee)

≤ P
∗
S
(U (S, ε j , α

)
implies a probabilistic guarantee at level ε j , j = 1, . . . ,m

)
.

Applying the union-bound and Theorem 2 yields the result. � 

Proof of Theorem 4 Consider the first statement. By Theorem 1, VaRP
ε

(
vT ũ
) ≤

δ∗(v|Uε). Moreover, since supp(P∗) ⊆ U0, 0 = P(vT ũ > maxu∈supp(P∗) vTu) ≥
P(vT ũ > maxu∈U0 v

Tu) = P(vT ũ > δ∗(v| U0)) This, in turn, implies VaRP
ε

(
vT ũ
) ≤

δ∗(v|U0). Combining, we haveVaRP
ε

(
vT ũ
) ≤ min (δ∗(v|Uε), δ

∗(v|U0)) = δ∗(v|Uε∩
U0) where the last equality follows because both U0 and Uε are convex. Thus, Uε ∩U0
implies a probabilistic guarantee by Theorem 1. The second statement is entirely
similar. � 

Proof of Theorem 5 and Proposition 1

We require the following well-known result.

Theorem 14 (Rockafellar and Ursayev [43]) Suppose supp(P) ⊆ {a0, . . . , an−1} and
let P(ũ = a j ) = p j . Let

UCVaRPε =
⎧
⎨

⎩
u ∈ R

d : u =
n−1∑

j=0
q ja j , q ∈ Δn, q ≤ 1

ε
p

⎫
⎬

⎭
. (44)

Then, δ∗(v| UCVaRPε ) = CVaRP
(
vT ũ
)
.

We now prove the theorem.

Proof of Theorem 5 We prove the theorem for Uχ2

ε . The proof for UG
ε is simi-

lar. From Theorem 2, it suffices to show that δ∗(v| Uχ2

ε ) is an upper bound to
sup

P∈Pχ2 VaR
P
ε

(
vT ũ
)
:
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sup
P∈Pχ2

VaRP

ε

(
vT ũ
)
≤ sup

P∈Pχ2
CVaRP

ε

(
vT ũ
) (

CVaRP

ε is an upper bound to VaRP

ε

)

= sup
P∈Pχ2

max
u∈UCVaRPε

vT u (Theorem 14)

= max
u∈Uχ2

ε

vT u (Combining Eqs. (15) and (13)).

To obtain the expression for δ∗(v| Uχ2

ε ) observe,

δ∗
(
v| Uχ2

ε

)
= inf

w≥0

{

max
q∈Δn

n−1∑

i=0
qi
(
aTi v − wi

)
+ 1

ε
max
p∈Pχ2

wTp

}

,

from Lagrangian duality. The optimal value of the first maximization is β =
maxi aTi v − wi . The second maximization is of the form studied in [9, Corollary
1] and has optimal value

inf
λ≥0,(λ+η)e≥w,η

η + λχ2
n−1,1−α

N
+ 2λ− 2

n−1∑

i=0
p̂i
√

λ
√

λ+ η − wi .

Introduce the auxiliary variables si , such that s2i ≤ λ ·(λ+η−wi ). This last constraint
is of hyperbolic type. Using [37], we can rewrite

s2i ≤ λ · (λ+ η − wi ) , i = 0, . . . , n − 1,

λ+ η ≥ wi , i = 0, . . . , n − 1,

λ ≥ 0

⇔
∥
∥
∥
∥

2si
η − wi

∥
∥
∥
∥ ≤ 2λ+ η − wi , i = 0, . . . , n − 1.

Substituting these constraints (and the auxiliary variable) above yields the given for-
mulation. � 
Proof of Proposition 1 Let Δ j ≡ p̂ j−p j

p j
. Then, D(p̂,p) = ∑n−1

j=0 p̂ j log( p̂ j/p j ) =
∑n−1

j=0 p j (Δ j + 1) log(Δ j + 1). Using a Taylor expansion of x log x around x = 1
yields,

D
(
p̂,p
) =

n−1∑

j=0
p j

(

Δ j +
Δ2

j

2
+ O

(
Δ3

j

))

=
n−1∑

j=0

(
p̂ j − p j

)2

2p j
+

n−1∑

j=0
O
(
Δ3

j

)
,

(45)

where the last equality follows by expanding out terms and observing that
∑n−1

j=0 p̂ j =
∑n−1

j=0 p j = 1. Next, note p ∈ PG "⇒ p̂ j/p j ≤ exp(
χ2
n−1,1−α

2N p̂ j
). From the Strong

Law of Large Numbers, for any 0 < α′ < 1, there exists M such that for all N > M ,
p̂ j ≥ p∗j/2 with probability at least 1−α′ for all j = 0, . . . , n−1, simultaneously. It

follows that for N sufficiently large, with probability 1− α′, p ∈ PG "⇒ p̂ j/p j ≤
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exp(
χ2
n−1,1−α

Np∗j
) which implies that |Δ j | ≤ exp(

χ2
n−1,1−α

Np∗j
) − 1 = O(N−1). Substituting

into (45) completes the proof. � 

Proof of Theorems 6 and 7

We first prove the following auxiliary result that will allow us to evaluate the inner
supremum in (19).

Theorem 15 Suppose g(u) is monotonic. Then,

sup
Pi∈PK S

i

E
Pi
[
g (ũi )

] = max

⎛

⎝
N+1∑

j=0
qL
j

(
Γ K S

)
g
(
û( j)
i

)
,

N+1∑

j=0
qR
j

(
Γ K S

)
g
(
û( j)
i

)
⎞

⎠

(46)

Proof Observe that the discrete distribution which assigns mass qL
j

(
Γ K S

)
(resp.

qR
j

(
Γ K S

)
) to the point û( j) for j = 0, . . . , N + 1 is an element of PK S

i . Thus,
Eq. (46) holds with “=” replaced by “≥”.

For the reverse inequality, we have two cases. Suppose first that g(ui ) is non-
decreasing. Given Pi ∈ PK S

i , consider the measure Q defined by

Q

(
ũi = û(0)

i

)
≡ 0, Q

(
ũi = û(1)

i

)
≡ Pi

(
û(0)
i ≤ ũi ≤ û(1)

i

)
,

Q

(
ũi = û( j)

i

)
≡ Pi

(
û( j−1)
i < ũi ≤ û( j)

i

)
, j = 2, . . . , N + 1. (47)

Then, Q ∈ PK S , and since g(ui ) is non-decreasing, EPi [g(ũi )] ≤ E
Q[g(ũi )]. Thus,

the measure attaining the supremum on the left-hand side of Eq. (46) has discrete
support {û(0)

i , . . . , û(N+1)
i }, and the supremum is equivalent to the linear optimization

problem:

max
p

N+1∑

j=0
p j g
(
û( j)
)

s.t. p ≥ 0, eT p = 1,

j∑

k=0
pk ≥ j

N
− Γ K S ,

N+1∑

k= j

pk ≥ N − j + 1

N
− Γ K S , j = 1, . . . , N , (48)

(We have used the fact that Pi (ũi < û( j)
i ) = 1− Pi (ũ ≥ û( j)

i ).) Its dual is:

min
x,y,t

N∑

j=1
x j

(
Γ K S − j

N

)
+

N∑

j=1
y j

(
Γ K S − N − j + 1

N

)
+ t

s.t. t −
∑

k≤ j≤N

x j −
∑

1≤ j≤k
y j ≥ g

(
û(k)
)

, k = 0, . . . , N + 1,

x, y ≥ 0.
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Observe that the primal solution qR
(
Γ K S

)
and dual solution y = 0, t = g(û(N+1)

i )

and

x j =
{
g
(
û( j+1)
i

)
− g
(
û( j)
i

)
for N − j∗ ≤ j ≤ N ,

0 otherwise,

constitute a primal-dual optimal pair. This proves (46) when g is non-decreasing. The
case of g(ui ) non-increasing is similar. � 

Proof of of Theorem 6 Notice by Theorem 15, Eq. (19) is equivalent to the given
expression for δ∗(v| U I

ε ). By our schema, it suffices to show then that this expression
is truly the support function of U I

ε . By Lagrangian duality,

δ∗
(
v| U I

ε

)
= inf

λ≥0

⎛

⎜
⎜
⎝

λ log(1/ε)+max
q,θ

d∑

i=1
vi

N+1∑

j=0
û( j)
i qij − λ

d∑

i=1
D
(
qi , θiqL + (1− θi )qR

)

s.t. qi ∈ ΔN+2, 0 ≤ θi ≤ 1, i = 1, . . . , d.

⎞

⎟
⎟
⎠

The inner maximization decouples in the variables indexed by i . The i th subproblem
is

max
θi∈[0,1]

λ

⎧
⎨

⎩
max

qi∈ΔN+2

⎧
⎨

⎩

N+1∑

j=0

vi û
( j)
i

λ
qi j − D

(
qi , θiqL + (1− θi )qR

)
⎫
⎬

⎭

⎫
⎬

⎭
.

The inner maximization can be solved analytically [17, p. 93], yielding:

qij =
pij e

vi û
( j)
i /λ

∑N+1
j=0 pij e

vi û
( j)
i /λ

, pij = θi q
L
j

(
Γ K S

)
+ (1− θi ) q

R
j

(
Γ K S

)
. (49)

Substituting in this solution and recombining subproblems yields

λ log (1/ε)+ λ

d∑

i=1
log

⎛

⎝ max
θi∈[0,1]

N+1∑

j=0

(
θi q

L
j (Γ K S)+ (1− θi )q

R
j (Γ K S)

)
evi û

( j)
i /λ.

⎞

⎠

(50)

The inner optimizations over θi are all linear, and hence achieve an optimal solution
at one of the end points, i.e., either θi = 0 or θi = 1. This yields the given expression
for δ∗(v| U).

Following this proof backwards to identify the optimal qi , and, thus, u ∈ U I also
proves the validity of the procedure given in Remark 8 � 
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Proof of Theorem 7 By inspection, (28) is the worst-case value of (26) over PFB . By
Theorem 3, it suffices to show that this expression truly is the support function ofU FB

ε .
First observe

max
u∈U FB

ε

uT v = min
λ≥0

{

λ log(1/ε)+ max
mb≤y1≤mb,y2≥,y3≥0

d∑

i=1
vi (y1i+y2i−y3i )

−λ

d∑

i=1

y22i
2σ 2

f i

+ y23i
2σ 2

bi

}

byLagrangian strong duality. The innermaximization decouples by i . The i th subprob-
lem further decouples into three sub-subproblems. The first is maxmbi≤yi1≤m f i vi y1i
with optimal solution

y1i =
{
m f i if vi ≥ 0,

mbi if vi < 0.

The second sub-subproblem is maxy2i≥0 vi y2i −λ
y22i
2σ 2

f i
. This is maximizing a concave

quadratic function of one variable. Neglecting the non-negativity constraint, the opti-

mum occurs at y∗2i =
viσ

2
f i

λ
. If this value is negative, the optimum occurs at y∗2i = 0.

Consequently,

max
y2i≥0

vi y2i − λ
y22i
2σ 2

f i

=
{

viσ
2
f i

2λ if vi ≥ 0,

0 if vi < 0.

Similarly, we can show that the third subproblem has the following optimum value

max
y3i≥0

−vi y3i − λ
y23i
2σ 2

bi

=
{

viσ
2
bi

2λ if vi ≤ 0,

0 if vi > 0.

Combining the three sub-subproblems yields

δ∗
(
v|U FB

ε

)
=
∑

i :vi>0

vim f i +
∑

i :vi<0

vimbi +min
λ≥0 λ log (1/ε)

+ 1

2λ

⎛

⎝
∑

i :vi>0

v2i σ
2
f i +

∑

i :vi<0

v2i σ
2
bi

⎞

⎠ .

This optimization can be solved closed-form, yielding

λ∗ =
√∑

i :vi>0 v2i σ
2
f i +

∑
i :vi≤0 v2i σ

2
bi

2 log(1/ε)
.
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Simplifying yields the right hand side of (28). Moreover, following the proof back-
wards to identify the maximizing u ∈ U FB

ε proves the validity of the procedure given
in Remark 11. � 

Proof of Theorem 8

Proof Observe,

sup
P∈PM

VaRP

ε

(
vT ũ
)
≤ sup

P∈PM

d∑

i=1
VaRP

ε/d (vi ũi ) =
∑

i :vi>0

vi û
(s)
i +

∑

i :vi≤0
vi û

(N−s+1)
i ,

(51)

where the equality follows from the positive homogeneity of VaRP
ε , and this last

expression is equivalent to (32) because û(N−s+1)
i ≤ û(s)

i . By Theorem 2, it suffices
to show that δ∗(v| UM ) is the support function of UM

ε , and this is immediate. � 

Proof of Theorem 9

Proof We first compute supP∈P LCX P(vT ũ > t) for fixed v, t . In this spirit of Bertsi-
mas et al. [45] and Shapiro [15] this optimization admits the following strong dual:

inf
θ,wσ ,λ(a,b)

θ −
⎛

⎝ 1

N

N∑

j=1
‖û j‖2 − Γσ

⎞

⎠wσ +
∫

B
Γ (a, b)dλ(a, b)

s.t. θ − wσ‖u‖2 +
∫

B

(
aTu− b

)+
dλ (a, b) ≥ I

(
uT v > t

)
∀u ∈ R

d ,

wσ ≥ 0, dλ (a, b) ≥ 0, (52)

where Γ (a, b) ≡ 1
N

∑N
j=1(aT û j − b)+ + ΓLCX . We claim that wσ = 0 in any

feasible solution. Indeed, suppose wσ > 0 in some feasible solution. Note (a, b) ∈ B
implies that (aTu−b)+ = O(‖u‖) as ‖u‖ → ∞. Thus, the left-hand side of Eq. (52)
tends to −∞ as ‖u‖ → ∞ while the right-hand side is bounded below by zero. This
contradicts the feasibility of the solution.

Since wσ = 0 in any feasible solution, rewrite the above as

inf
θ,λ(a,b)

θ +
∫

B
Γ (a, b) dλ (a, b)

s.t. θ +
∫

B

(
aTu− b

)+
dλ (a, b) ≥ 0 ∀u ∈ R

d , (53a)

θ +
∫

B

(
aTu− b

)+
dλ (a, b) ≥ 1 ∀u ∈ {u ∈ R

d : uT v > t},
dλ (a, b) ≥ 0. (53b)
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The two infinite constraints can be rewritten using duality. Specifically, Eq. (53a) is

− θ ≤ min
s(a,b)≥0,ũ∈Rd

∫

B
s (a, b) dλ (a, b)

s.t. s (a, b) ≥
(
aT ũ− b

)
∀ (a, b) ∈ B,

which admits the dual:

− θ ≤ max
y1(a,b)

−
∫

B
b dy1 (a, b)

s.t. 0 ≤ dy1 (a, b) ≤ dλ (a, b) ∀ (a, b) ∈ B,
∫

B
a dy1 (a, b) = 0.

Equation (53b) can be treated similarly using continuity to take the closure of {u ∈
R
d : uT v > t}. Combining both constraints yields the equivalent representation of

(53)

inf
θ,τ,λ(a,b),

y1(a,b),y2(a,b)

θ +
∫

B
Γ (a, b) dλ (a, b)

s.t. θ −
∫

B
b dy1 (a, b) ≥ 0, θ + tτ −

∫

B
b dy2 (a, b) ≥ 1,

0 ≤ dy1 (a, b) ≤ dλ (a, b) ∀ (a, b) ∈ B,

0 ≤ dy2 (a, b) ≤ dλ (a, b) ∀ (a, b) ∈ B,
∫

B
a dy1 (a, b) = 0,

τv =
∫

B
a dy2 (a, b) ,

τ ≥ 0. (54)

Now the worst-case Value at Risk can be written as

sup
P∈P LCX

VaRP

ε

(
vT ũ
)
= inf

θ,τ,t,λ(a,b),
y1(a,b),y2(a,b)

t

s.t. θ +
∫

B
Γ (a, b)dλ(a, b) ≤ ε,

(θ, τ, λ(a, b), y1(a, b), y2(a, b), t) feasible in (54).

We claim that τ > 0 in an optimal solution. Suppose to the contrary that τ = 0 in a
candidate solution to this optimization problem. As t →−∞, this candidate solution
remains feasible, which implies that for all t arbitrarily small P(ũT v > t) ≤ ε for all
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P ∈ PLCX . However, the empirical distribution P̂ ∈ PLCX , and for this distribution,
we can find a finite t ′ such that P̂(ũT v > t ′) > ε. This is a contradiction.

Since τ > 0, apply the transformation (θ/τ, 1/τ, λ(a, b)/τ, y(a, b)/τ) →
(θ, τ, λ(a, b), y(a, b)) yielding

inf
θ,τ,t,λ(a,b),
y1(a,b),y2(a,b)

t

s.t. θ +
∫

B
Γ (a, b)dλ(a, b) ≤ ετ

θ −
∫

B
b dy1(a, b) ≥ 0, θ + t −

∫

B
b dy2(a, b) ≥ τ,

0 ≤ dy1(a, b) ≤ dλ(a, b) ∀(a, b) ∈ B,

0 ≤ dy2(a, b) ≤ dλ(a, b) ∀(a, b) ∈ B,
∫

B
a dy1(a, b) = 0, v =

∫

B
a dy2(a, b),

τ ≥ 0.

Eliminate the variable t , andmake the transformation (τε, θ−∫B bdy1(a, b)) → (τ, θ)

to yield

sup
P∈P LCX

VaRP

ε

(
vT ũ
)
= min

τ,θ,y1,y2,λ

1

ε
τ − θ −

∫

B
bdy1 (a, b)+

∫

B
bdy2 (a, b)

s.t. θ +
∫

B
bdy1 (a, b)+

∫

B
Γ (a, b) dλ (a, b) ≤ τ

0 ≤ dy1 (a, b) ≤ dλ (a, b) ∀ (a, b) ∈ B,

0 ≤ dy2 (a, b) ≤ dλ (a, b) ∀ (a, b) ∈ B,
∫

B
a dy1 (a, b) = 0, v =

∫

B
a dy2 (a, b) ,

θ, τ ≥ 0. (55)

Taking the dual of this last optimization problem and simplifying yields supP∈P LCX

VaRP
ε

(
vT ũ
) = maxu∈U LCX vTu where

U LCX
ε =

{
u ∈ R

d : ∃r ∈ R
d , 1 ≤ z ≤ 1/ε, s.t.

(
aT r − b (z − 1)

)+ +
(
aTu− b

)+ ≤ z

N

N∑

j=1

(
aT û j − b

)+

+ ΓLCX , ∀ (a, b) ∈ B
}
. (56)
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We next seek to remove the semi-infinite constraint in the definition of U LCX . Note
that by considering the four possible signs of the two left hand side terms,

(
aT r − b (z − 1)

)+ +
(
aTu− b

)+

= max
(
aT (r + u)− bz, aT r − b (z − 1) , aTu− b, 0

)

Thus, we can replace the original semi-infinite constraint with the following three
semi-infinite constraints

aT (r + u)− bz − z

N

N∑

j=1

(
aT û j − b

)+ ≤ ΓLCX ∀ (a, b) ∈ B

aT r − b (z − 1)− z

N

N∑

j=1

(
aT û j − b

)+ ≤ ΓLCX ∀ (a, b) ∈ B

aTu− b − z

N

N∑

j=1

(
aT û j − b

)+ ≤ ΓLCX ∀ (a, b) ∈ B,

where the last case (corresponding to the fourth assignment of signs) is trivial since
ΓLCX + z

N

∑N
j=1(aT û j − b)+ ≥ 0. In contrast to the constraint (56), each of these

constraints is concave in (a, b). We can find the robust counterpart of each constraint
using [5] by computing the concave conjugate of the term functions on the left. The
resulting representation is given in (34). Finally, to complete the theorem, we use
linear programming duality to rewrite maxu∈U LCX vTu as a minimization, obtaining
the representation of the support function and worst-case VaR. Some rearrangement
yields the representation (35). � 

Proofs of Theorems 11 and 13

Proof of Theorem 11 By Theorem 3, it suffices to show that δ∗(v| UCS
ε ) is given

by (38), which follows immediately from two applications of the Cauchy-Schwartz
inequality. � 

To prove Theorem 13 we require the following proposition:

Proposition 2

sup
P∈PDY

(
γ B
1 ,γ B

2

)
P

(
ũT v > t

)
= min

r,s,θ,y1,y2,Z
r + s

s.t.

(
r + y+T

1 û(0) − y−T
1 û(N+1) 1

2 (q− y1)T
1
2 (q− y1) Z

)
� 0,

(
r + y+T

2 û(0) − y−T
2 û(N+1) + θ t − 1 1

2 (q− y2 − θv)T
1
2 (q− y2 − θv) Z

)
�0,
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s ≥
(
γ B
2 Σ̂ + μ̂μ̂

T
)
◦ Z+ μ̂

T q+
√

γ B
1 ‖q+ 2Zμ̂‖

Σ̂
−1 ,

y1 = y+1 − y−1 , y2 = y+2 − y−2 , y+1 , y−1 , y+2 , y−2 θ ≥ 0. (57)

Proof We suppress the dependence on γ B
1 , γ B

2 in the notation. We claim that
supP∈PDY P(ũT v > t) has the following dual representation:

min
r,s,q,Z,y1,y2,θ

r + s

s.t. r + uTZu+ uTq ≥ 0 ∀u ∈
[
û(0), û(N+1)] ,

r + uTZu+ uTq ≥ 1 ∀u ∈
[
û(0), û(N+1)] ∩

{
u : uT v > t

}
,

s ≥
(
γ B
2 Σ̂ + μ̂μ̂

T
)
◦ Z+ μ̂

Tq+
√

γ B
1 ‖q+ 2Zμ̂‖

Σ̂
−1 ,

Z � 0. (58)

See the proof of Lemma 1 in [25] for details. Since Z is positive semidefinite, we can
use strong duality to rewrite the two semi-infinite constraints:

min
u

uTZu+ uT q

s.t. û(0) ≤ u ≤ û(N+1),
⇐⇒

max
y1,y

+
1 ,y−1

− 1

4
(q− y1)T Z−1 (q− y1)+ y+1 û

(0) − y−1 û
(N+1)

s.t. y1 = y+1 − y−1 , y+1 , y−1 ≥ 0,

min
u

uTZu+ uT q

s.t. û(0) ≤ u ≤ û(N+1),

uT v ≥ t,

⇐⇒
max

y2,y
+
2 ,y−2

− 1

4
(q− y2 − θv)T Z−1 (q− y2 − θv)+ y+2 û

(0) − y−2 û
(N+1) + θ t

s.t. y2 = y+2 − y−2 , y+2 , y−2 ≥ 0, θ ≥ 0.

Then, by using Schur-Complements, we can rewrite Problem (58) as in the proposition.
� 

We can now prove the theorem.

Proof of Theorem 13 Using Proposition 2, we can characterize the worst-case VaR
by

sup
P∈PDY

VaRP

ε

(
vT ũ
)

= inf {t : r + s ≤ ε, (r, s, t, θ, y1, y2,Z) are feasible in problem (57)} .
(59)

We claim that θ > 0 in any feasible solution to the infimum in Eq. (59). Suppose to the
contrary that θ = 0. Then this solution is also feasible as t ↓ ∞, which implies that
P(ũT v > −∞) ≤ ε for all P ∈ PDY . On the other hand, the empirical distribution
P̂ ∈ PDY , a contradiction.

Since θ > 0, we can rescale all of the above optimization variables in prob-
lem (57) by θ . Substituting this into Eq. (59) yields the given expression for
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supP∈PDY VaRP
ε

(
vT ũ
)
. Rewriting this optimization problem as a semidefinite opti-

mization problem and taking its dual yields UDY
ε in the theorem. By Theorem 3, this

set simultaneously implies a probabilistic guarantee. � 

Proof of Theorem 16

Proof For each part, the convexity in (v, t) is immediate since δ∗(v| Uε) is a support
function of a convex set. For the first part, note that from the second part of Theorem11,
δ∗(v| UCS

ε ) ≤ t will be convex in ε for a fixed (v, t) whenever
√
1/ε − 1 is convex.

Examining the second derivative of this function, this occurs on the interval 0 <

ε < .75. Similarly, for the second part, note that from the second part of Theorem 7,
δ∗(v| U FB

ε ) ≤ t will be convex in ε for a fixed (v, t) whenever
√
2 log(1/ε) is convex.

Examining the second derivative of this function, this occurs on the interval 0 < ε <

1
√
e.

From the representations of δ∗(v|Uχ2

ε ) and δ∗(v|UG
ε ) in Theorem 5, we can see they

will be convex in ε whenever 1/ε is convex, i.e., 0 < ε < 1. From the representation
of δ∗(v|U I

ε ) in Theorem 6 and since λ ≥ 0, we see this function will be convex in ε

whenever log(1/ε) is convex, i.e., 0 < ε < 1.
Finally, examining the support functions of U LCX

ε and UDY
ε shows that ε occurs

linearly in each of these functions. � 

Appendix 2: Omitted Figures

This section contains additional figures omitted from the main text.

Additional Bootstrapping Results

Figure 5 illustrates the set UCS
ε for the example considered in Fig. 2 with thresh-

olds computed with and without the bootstrap. Notice that for N = 1000, the
non-bootstrapped set is almost as big as the full support and shrinks slowly to its
infinite limit. Furthermore, the bootstrapped set with N = 100 points is smaller than
the non-bootstrapped version with 50 times as many points.

Additional Portfolio Results

Figure 6 summarizes the case N = 2000 for the experiment outlined in Sect. 9.3.

Appendix 3: Optimizing ε j ’s for Multiple Constraints

In this section, we propose an approach for solving (10). We say that a constraint
f (x, y) ≤ 0 is bi-convex in x and y if for every y, the set {x : f (x, y) ≤ 0} is convex
and for every x, the set {y : f (x, y) ≤ 0} is convex. The key observation is then
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Fig. 5 UCS
ε with and without bootstrapping for the example from Fig. 2. NB = 10,000, α = 10%,

ε = 10%
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Fig. 6 The case N = 2000 for the experiment outlined in Sect. 9.3. The left panel shows the cross-validation
results. The right panel shows the average holdings by method. α = ε = 10%

Theorem 16 a) The constraint δ∗(v| UCS
ε ) ≤ t is bi-convex in (v, t) and ε, for

0 < ε < .75.
b) The constraint δ∗(v| U FB

ε ) ≤ t is bi-convex in (v, t) and ε, for 0 < ε < 1/
√
e.

c) The constraint δ∗(v| Uε) ≤ t is bi-convex in (v, t) and ε, for 0 < ε < 1, and

Uε ∈ {Uχ2

ε ,UG
ε ,U I

ε ,U LCX
ε ,UDY

ε }.
This observations suggests a heuristic: Fix the values of ε j , and solve the robust

optimization problem in the original decision variables. Then fix this solution and opti-
mize over the ε j . Repeat until some stopping criteria is met or no further improvement
occurs. Chen et al. [22] suggested a similar heuristic for multiple chance-constraints
in a different context. We propose a refinement of this approach that solves a linear
optimization problem to obtain the next iterates for ε j , incorporating dual information
from the overall optimization and other constraints. Our proposal ensures the opti-
mization value is non-increasing between iterations and that the procedure is finitely
convergent.

For simplicity, we present our approach using m constraints of the form
δ∗(v| UCS

ε ) ≤ t . Without loss of generality, assume the overall optimization prob-
lem is a minimization. Consider the j th constraint, and let (v′, t ′) denote the subset
of the solution to the original optimization problem at the current iterate pertaining to
the j th constraint. Let ε′j , j = 1, . . . ,m denote the current iterate in ε. Finally, let λ j

denote the shadow price of the j th constraint in the overall optimization problem.
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Notice from the second part of Theorem 11 that δ∗(v| UCS
ε ) is decreasing in ε.

Thus, for all ε j ≥ ε j , δ
∗(v′| UCS

ε j
) ≤ t ′, where,

ε j ≡
⎡

⎢
⎣

(
t ′ − μ̂

T v′ − Γ1‖v′‖2
)2

v′T (Σ + Γ2I) v′
+ 1

⎤

⎥
⎦

−1

.

Motivated by the shadow-price λ j , we define the next iterates of ε j , j = 1, . . . ,m
to be the solution of the linear optimization problem

min
ε

−
d∑

j=1

⎛

⎝
√
v′T (Σ + Γ2I)v′

2ε′2
√

1
ε′ − 1

⎞

⎠ λ j · ε j

s.t. ε j ≤ ε j ≤ .75, j = 1, . . . ,m,

m∑

j=1
ε j ≤ ε, ‖ε′ − ε‖1 ≤ κ. (60)

The coefficient of ε j in the objective function is λ j ·∂ε j δ
∗(v′|UCS

ε j
)which is intuitively

a first-order approximation to the improvement in the overall optimization problem
for a small change in ε j . The norm constraint on ε ensures that the next iterate is
not too far away from the current iterate, so that the shadow-price λ j remains a good
approximation. (We use κ = .05 in our experiments.) The upper bound ensures that
we remain in a region where δ∗(v| UCS

ε j
) is convex in ε j . Finally, the lower bounds

on ε j ensure that the previous iterate of the original optimization problem (v′, t ′) will
still be feasible for the new values of ε j . Consequently, the objective value of the
original optimization problem is non-increasing. We terminate the procedure when
the objective value no longer makes significant progress.

We can follow an entirely analogous procedure for each of our other sets, simply
adjusting the formulas for ε j , the upper bounds, and the objective coefficient appro-
priately. We omit the details.

Appendix 4: Queueing Analysis

Oneof the strengths of our approach is the ability to retrofit existing robust optimization
models by replacing their uncertainty sets with our proposed sets, thereby creating
new data-driven models that satisfy strong guarantees. In this section, we illustrate
this idea with a robust queueing model as in [4,14]. Bandi and Bertsimas [4] use
robust optimization to generate approximations to a performance metric of a queueing
network. We will combine their method with our new sets to generate probabilistic
upper bounds to these metrics. For concreteness, we focus on the waiting time in a
G/G/1 queue. Extending our analysis to more complex queueing networks can likely
be accomplished similarly. We stress that we do not claim that our new bounds are
the best possible – indeed there exist extremely accurate, specialized techniques for
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the G/G/1 queue – but, rather, that the retrofitting procedure is general purpose and
yields reasonably good results. These features suggest that a host of other robust
optimization applications in information theory [3], supply-chain management [7]
and revenue management [44] might benefit from this retrofitting.

Let ũi = (x̃i , t̃i ) for i = 1, . . . , n denote the uncertain service times and interarrival
times of the first n customers in a queue. We assume that ũi is i.i.d. for all i and has
independent components, and that there exists û(N+1) ≡ (x, t) such that 0 ≤ x̃i ≤ x
and 0 ≤ t̃i ≤ t almost surely.

From Lindley’s recursion [36], the waiting time of the nth customer is

W̃n= max
1≤ j≤n

⎛

⎝max

⎛

⎝
n−1∑

l= j

x̃l −
n∑

l= j+1
t̃l , 0

⎞

⎠

⎞

⎠ = max

⎛

⎝0, max
1≤ j≤n

⎛

⎝
n−1∑

l= j

x̃l −
n∑

l= j+1
t̃l

⎞

⎠

⎞

⎠.

(61)

Motivated by Bandi and Bertsimas [4], we consider a worst-case realization of a
Lindley recursion

max

⎛

⎝0, max
1≤ j≤n max

(x,t)∈U

⎛

⎝
n−1∑

l= j

x̃l −
n∑

l= j+1
t̃l

⎞

⎠

⎞

⎠ . (62)

Taking U = U FB
ε/n and applying Theorem 7 to the inner-most optimization yields

max
1≤ j≤n

(
m f 1 − mb2

)
(n − j)+

√

2 log (n/ε)
(
σ 2
f 1 + σ 2

b2

)√
n − j (63)

Relaxing the integrality on j , this optimization can be solved closed-form yielding

W 1,FB
n ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m f 1 − mb2

)
n +
√
2 log

( n
ε

) (
σ 2
f 1 + σ 2

b2

)√
n if n <

log
(
n
ε

)(
σ2
f 1+σ2

b2

)

2
(
mb2−m f 1

)2 or m f 1 > mb2,

log
(
n
ε

)(
σ2
f 1+σ2

b2

)

2
(
mb2−m f 1

) otherwise.

(64)

From (62), with probability at least 1 − α with respect to PS , each of the inner-
most optimizations upper bound their corresponding random quantity with probability
1− ε/n with respect to P∗. Thus, by union bound, P∗(W̃n ≤ W 1,FB

n ) ≥ 1− ε.
On the other hand, since {U FB

ε : 0 < ε < 1} simultaneously implies a probabilistic
guarantee, we can also optimize the choice of ε j in (63), yielding

123



D. Bertsimas et al.

W 2,FB
n ≡ min

w,ε
w

s.t. w ≥ (m f 1 − mb2
)
(n − j)

+
√

2 log
(
1/ε j
) (

σ 2
f 1 + σ 2

b2

)√
n − j, j = 1, . . . , n − 1,

w ≥ 0, ε ≥ 0,
n−1∑

j=1
ε j ≤ ε. (65)

From the KKT conditions, the constraint (65) will be tight for all j , so that W 2,FB
n

satisfies

n−1∑

j=1
exp

⎛

⎜
⎝−
(
W 2,FB

n − (m f 1 − mb2
))2

2(n − j)
(
σ 2
f 1 + σ 2

b2

)2

⎞

⎟
⎠ = ε, (66)

which can be solved by line search. Again, with probability 1− α with respect to PS ,
P
∗(W̃n ≤ W 2,FB

n ) ≥ 1− ε, and W 2,FB
n ≤ W 1,FB

n by construction.
We can further refine our bound by truncating the recursion (61) at customer

min(n, n(k)) where, with high probability, ñ ≤ n(k). We next provide a formal deriva-
tion of this bound, which we denote W 3,FB

n . Notice that in (61), the optimizing index
j represents the most recent customer to arrive when the queue was empty. Let ñ
denote the number of customers served in a typical busy period. Intuitively, it suffices
to truncate the recursion (61) at customer min(n, n(k)) where, with high probability,
ñ ≤ n(k). More formally, considering only the first half of the data x̂1, . . . , x̂�N/2� and
t̂1, . . . , t̂�N/2�, we compute the number of customers served in each busy period of
the queue, denoted n̂1, . . . , n̂K , which are i.i.d. realizations of ñ. Using the KS test at
level α1, we observe that with probability at least 1− α with respect to PS ,

P

(
ñ > n̂(k)

)
≤ 1− k

K
+ Γ K S(α), ∀k = 1, . . . , K . (67)

In other words, the queue empties every n̂(k) customers with at least this probability.
Next, calculate the constants m f ,mb, σ f , σ b using only the second half of the

data. Then, truncate the sum in (66) at min(n, n(k)) and replace the righthand side by
ε − 1+ k

K − Γ K S(α/2). Denote the solution of this equation by W 2,FB
n (k). Finally,

let W 3,FB
n ≡ min1≤k<K W 2,FB

n (k), obtained by grid-search.
We claim thatwith probability at least 1−2αwith respect toPS ,P(W̃n > W 3,FB

n ) ≤
ε. Namely, from our choice of parameters, Eqs. (66) and (67) hold simultaneously with
probability at least 1− 2α. Restrict attention to a sample path where these equations
hold. Since (67) holds for the optimal index k∗, recursion (61) truncated at n(k∗)

is valid with probability at least 1 − k∗
K + Γ K S(α). Finally, P(W̃n > W 3,FB

n ) ≤
P((61)isinvalid) + P((W̃n > W 2,FB

n (k∗) and (61) is valid) ≤ ε. This proves the
claim.
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Fig. 7 The left panel shows various bounds on the median waiting time (ε = .5) for n = 10 and various
values of N . The right panel bounds the entire cumulative distribution of the waiting time for n = 10 and

N = 1000. using WFB,3
n . In both cases, α = 20%

We observe in passing that since the constantsm f ,mb, σ f , σ b are computed using
only half the data, it may not be the case that W 3,FB

n < W 2,FB
n , particularly for small

N , but that typically W 3,FB
n is a much stronger bound than W 2,FB

n (see also Fig. 7).
Finally, our choice of U FB

ε was somewhat arbitrary. Similar analysis can be per-
formed for many of our sets. To illustrate, we next derive corresponding bounds for
the set UCS . Following essentially the same argument yields:

W 1,CS
n ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
μ̂1 − μ̂2

)
n +
(
Γ1 +

√
( n

ε
− 1)

(
σ 2
1 + σ 2

2 + 2Γ2
))√

n if n <

(
Γ1+
√
( n

ε
−1)
(
σ 2
1+σ 2

2+2Γ2
))2

4(μ̂1−μ̂2)
2

or μ̂1 > μ̂2,
(
Γ1+
√
( n

ε
−1)
(
σ 2
1+σ 2

2+2Γ2
))2

4(μ̂2−μ̂1)
otherwise

W 2,CS
n is the solution to

n−1∑

j=1

⎡

⎢
⎣

⎛

⎝W 2,CS
n − (μ̂1 − μ̂2

)
(n − j)

√
n − j

√
σ 2
1 + σ 2

2 + 2Γ2

− Γ1√
σ 2
1 + σ 2

2 + 2Γ2

⎞

⎠

2

+ 1

⎤

⎥
⎦

−1

= ε, (68)

and W 3,CS
n defined analogously to W 3,FB

n but using (68) in lieu of (66).
We illustrate these ideas numerically. Let service times follow a Pareto distribution

with parameter 1.1 truncated at 15, and the interarrival times follow an exponential
distribution with rate 3.05 truncated at 15.25. The resulting truncated distributions
have means of approximately 3.029 and 3.372, respectively, yielding an approximate
90% utilization.

As a first experiment, we bound the median waiting time (ε = 50%) for the n = 10
customer, using each of our bounds with differing amounts of data. We repeat this
procedure 100 times to study the variability of our bounds with respect to the data.
The left panel of Fig. 7 shows the average value of the bound and error bars for the
10% and 90% quantiles. As can be seen, all of the bounds improve as we add more
data. Moreover, optimizing the ε j ’s (the difference between WFB,1

n and WFB,2
n ) is

significant.
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Table 4 Summary statistics for
various bounds on median
waiting time

Mean SD 10% 90%

WFB,1
n 34.6 0.4 34.0 35.2

WFB,2
n 25.8 0.3 25.4 26.2

WFB,3
n 14.4 1.2 13.5 15.5

WKing 55.1 8.7 46.0 67.4

N = 10,000, n = 10, α = 10%.
The last two columns refer to
upper and lower quantiles over
the simulation

For comparison purposes, we include a sample analogue of Kingman’s bound [33]
on the 1− ε quantile of the waiting time, namely,

WKing ≡ μ̂x
(
σ̂ 2
a μ̂2

x + σ̂ 2
x μ̂2

t

)

2εμ̂2
t
(
μ̂t − μ̂x

) ,

where μ̂t , σ̂
2
t are the sample mean and sample variance of the arrivals, μ̂x , σ̂

2
x are the

sample mean and sample variance of the service times, and we have applied Markov’s
inequality. Unfortunately, this bound is extremely unstable, even for large N . The
dotted line in the left-panel of Fig. 7 is the average value over the 100 runs of this
bound for N = 10,000 data points (the error-bars do not fit on graph.) Sample statistics
for this bound and our bounds can also be seen in Table 4. As shown, our bounds are
both significantly better (with less data), and exhibit less variability.

As a second experiment, we use our bounds to calculate a probabilistic upper bound
on the entire CDF of W̃n for n = 10 with N = 1000, α = 20%. Results can be seen
in the right panel of Fig. 7. We have included the empirical CDF of the waiting
time and the sampled version of the Kingman bound comparison. As seen, our bounds
significantly improve upon the sampled Kingman bound, and the benefit of optimizing
the ε j ’s is again, significant. We remark that the ability to simultaneously bound the
entire CDF for any n, whether transient or steady-state, is an important strength of this
type of analysis.

Appendix 5: Constructing U I
ε from Other EDF Tests

In this section we show how to extend our constructions for U I
ε to other EDF tests. We

consider several of the most popular, univariate goodness-of-fit, empirical distribution
function test. Each test below considers the null-hypothesis H0 : P∗i = P0,i .

Kuiper (K) Test: The K test rejects the null hypothesis at level α if

max
j=1,...,N

(
j

N
− P0,i

(
ũi ≤ û( j)

i

))
+ max

j=1,...,N

(
P0,i

(
ũi < û( j)

i

)
− j − 1

N

)
> V1−α.

Cramer von-Mises (CvM) Test: The CvM test rejects the null hypothesis at level
α if
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1

12N 2 +
1

N

N∑

j=1

(
2 j − 1

2N
− P0,i

(
ũi ≤ û( j)

i

))2
> (T1−α)2 .

Watson (W) Test: The W test rejects the null hypothesis at level α if

1

12N 2 +
1

N

N∑

j=1

(
2 j − 1

2N
− P0,i

(
ũi ≤ û( j)

i

))2
−
⎛

⎝ 1

N

N∑

j=1

P0,i

(
ũi ≤ û( j)

i

)
− 1

2

⎞

⎠

2

> (U1−α)2.

Anderson-Darling (AD) Test: The AD test rejects the null hypothesis at level α if

−1−
N∑

j=1

2 j − 1

N 2

(
log
(
P0,i (ũi ≤ û( j)

i )
)
+ log

(
1− P0,i

(
ũi ≤ û(N+1− j)

i

)))

> (A1−α)2

Tables of the thresholds above are readily available (e.g., [47, and references therein]).
As described in [15], the confidence regions of these tests can be expressed in the

form

PEDF
i =

{
Pi ∈ θ

[
û(0)
i , û(N+1)

i

]
: ∃ζ ∈ R

N , Pi

(
ũi ≤ û( j)

i

)
= ζi , ASζ−bS ∈ KS

}
,

where the the matrixAS , vector bS and coneKS depend on the choice of test. Namely,

KK = {(x, y) ∈ R
2N : min

i
xi +min

i
yi ≥ 0},

bK =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1
N − V1−α/2

...
N
N − V1−α/2
− 0

N − V1−α/2
...

− N−1
N − V1−α/2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, AK =
( [IN ]
[−IN ]

)
,

KCvM = {x ∈ R
N , t ∈ R+ : ‖x‖ ≤ t},

bCvM =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

√
N (T 2

1−α)2 − 1
2N

1
2N
3
2N
...

2N−1
2N

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, ACvM =
(
0 · · · 0
[IN ]

)
, (69)
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KW = {x ∈ R
N+1, t ∈ R+ : ‖x‖ ≤ t}, bW =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

− 1
2 +
( N
24 − N

2 (U1−α)2
)

− 1
2 −
( N
24 − N

2 (U1−α)2
)

0
...

0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

,

AUN =
⎛

⎜
⎝

1−N
2N

3−N
2N . . . N−1

2N
N−1
2N

N−3
2N . . . 1−N

2N[
IN − 1

N EN
]

⎞

⎟
⎠ , (70)

KAD =
{

(z, x, y) ∈ R× R
2N+ : |z| ≤

N∏

i=1
(xi yi )

2i−1
2N2

}

, bAD =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

e−(A1−α)2−1
0
...

0
−1
...

−1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

AAD =
⎛

⎝
0 · · · 0
[IN ]
[− ĨN ]

⎞

⎠ , (71)

where IN is the N × N identity matrix, ĨN is the skew identity matrix ([ĨN ]i j = I[i =
N − j]), and EN is the N × N matrix of all ones.

Let K∗ denote the dual cone to K. By specializing Theorem 10 of Bertsimas et
al. [15], we obtain the following theorem, paralleling Theorem 15.

Theorem 17 Suppose g(u) is monotonic and right-continuous, and let P S denote the
confidence region of any of the above EDF tests.

sup
Pi∈PEDF

i

E
Pi [g (ũi )] = min

r,c
bTS r + cN+1

s.t. − r ∈ K∗
S, c ∈ R

N+1,
(
AT
S r
)

j
= c j − c j+1 ∀ j = 1, . . . , N ,

c j ≥ g
(
û( j−1)
i

)
, c j ≥ g

(
û( j)
i

)
, j = 1, . . . , N + 1. (72)

= max
z,qL ,qR ,p

N+1∑

j=0

p j g
(
û( j)
i

)

s.t. ASz− bS ∈ KS, qL ,qR,p ∈ R
N+1+

qL
j + qR

j = z j − z j−1, j = 1, . . . , N ,
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qL
N+1 + qR

N+1 = 1− zN

p0 = qL
1 , pN+1=qR

N+1, p j = qL
j+1 + qR

j , j = 1, . . . , N ,

(73)

where AS,bS,KS are the appropriate matrix, vector and cone to the test. Moreover,
when g(u) is non-decreasing (resp. non-increasing), there exists an optimal solution
where qL = 0 (resp. qR = 0) in (73).

Proof Apply Theorem 10 of Bertsimas et al. [15] and observe that since g(u) is
monotonic and right continuous,

c j ≥ sup
u∈
(
û( j−1)
i , û( j)

i

] g (u) ⇐⇒ c j ≥ g
(
û( j−1)
i

)
, c j ≥ g

(
û( j)
i

)
.

Take the dual of this (finite) conic optimization problem to obtain the given maximiza-
tion formulation.

To prove the last statement, suppose first that g(u) is non-decreasing and fix some
j . If g(û( j)

i ) > g(û( j−1)
i ), then by complementary slackness, qL = 0. If g(û( j)

i ) =
g(û( j−1)

i ), then given any feasible (qL
j , qR

j ), the pair (0, qL
j +qR

j ) is also feasible with

the same objective value. Thus, without loss of generality, qL = 0. The case where
g(u) is non-increasing is similar. � 
Remark 22 At optimality of (73), p can be considered a probability distribution,
supported on the points û( j)

i j = 0, . . . , N + 1. This distribution is analogous to
qL(Γ ),qR(Γ ) for the KS test.

In the special case of the K test, we can solve (73) explicitly to find this worst-case
distribution.

Corollary 1 When PEDF
i refers specifically to the K test in Theorem 17 and if g is

monotonic, we have

sup
Pi∈PEDF

i

E
Pi
[
g(ũi )

] = max

⎛

⎝
N+1∑

j=0
qL
j

(
Γ K
)
g
(
û( j)
i

)
,

N+1∑

j=0
qR
j

(
Γ K
)
g
(
û( j)
i

)
⎞

⎠ .

(74)

Proof One can check that in the case of the K test, themaximization formulation given
is equivalent to (48) with Γ K S replaced by Γ K . Following the proof of Theorem 15
yields the result. � 
Remark 23 One an prove that Γ K ≥ Γ K S for all N , α. Consequently, PK S

i ⊆ PK
i .

For practical purposes, one should thus prefer the KS test to the K test, as it will yield
smaller sets.
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We can now generalize Theorem 6. For each of K, CvM, W and AD tests, define
the (finite dimensional) set

PEDF
i ={p ∈ R

N+2+ : ∃qL ,qR ∈ R
N+2+ , z ∈ R

N s.t. p,qL ,qR, z are feasible in (73)},
(75)

using the appropriate AS,bS,KS .

Theorem 18 SupposeP∗ is known to have independent components, with supp(P∗) ⊆
[û(0), û(N+1)].
i) With probability at least 1 − α over the sample, the family {U I

ε : 0 < ε < 1}
simultaneously implies a probabilistic guarantee, where

U I
ε =
{
u ∈ R

d : ∃pi ∈ PEDF
i , qi ∈ ΔN+2, i = 1 . . . , d,

N+1∑

j=0
û( j)
i qij = ui i = 1, . . . , d,

d∑

i=1
D
(
qi ,pi

)
≤ log(1/ε)

}
.

(76)

ii) In the special case of the K test, the above formulation simplifies to (21) with Γ K S

replaced by Γ K .

The proof of the first part is entirely analogous to Theorem 6, but uses Theorem 17 to
evaluate the worst-case expectations. The proof of the second part follows by applying
Corollary 1. We omit the details.

Remark 24 In contrast to our definition of U I
ε using the KS test, we know of no simple

algorithm for evaluating δ∗(v|U I
ε )when using theCvM,W, orAD tests. (For theK test,

the same algorithm applies but with Γ K replacing Γ K S .) Although it still polynomial
time to optimize over constraints δ∗(v| U I

ε ) ≤ t for these tests using interior-point
solvers for conic optimization, it is more challenging numerically.
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